Search results for: Relative roughness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 946

Search results for: Relative roughness

766 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: Multiscale, bi-dimensional, wavelets, SPM, backscattering, multilayer, air pockets, vegetable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
765 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory

Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma

Abstract:

Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.

Keywords: Petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
764 Fluctuations of Transfer Factor of the Mixer Based on Schottky Diode

Authors: Alexey V. Klyuev, Arkady V. Yakimov, Mikhail I. Ryzhkin, Andrey V. Klyuev

Abstract:

Fluctuations of Schottky diode parameters in a structure of the mixer are investigated. These fluctuations are manifested in two ways. At the first, they lead to fluctuations in the transfer factor that is lead to the amplitude fluctuations in the signal of intermediate frequency. On the basis of the measurement data of 1/f noise of the diode at forward current, the estimation of a spectrum of relative fluctuations in transfer factor of the mixer is executed. Current dependence of the spectrum of relative fluctuations in transfer factor of the mixer and dependence of the spectrum of relative fluctuations in transfer factor of the mixer on the amplitude of the heterodyne signal are investigated. At the second, fluctuations in parameters of the diode lead to occurrence of 1/f noise in the output signal of the mixer. This noise limits the sensitivity of the mixer to the value of received signal.

Keywords: Current-voltage characteristic, fluctuations, mixer, Schottky diode, 1/f noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
763 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
762 Effects of Chitosan as the Growth Stimulator for Grammatophyllum speciosum in Vitro Culture

Authors: Sopalun K., Thammasiri K., Ishikawa K.

Abstract:

The effects of chitosan, a biodegradable polymer, were studied in Grammatophyllum speciosum protocorm-like bodies (PLBs) in vitro culture. The chitosan concentration of 0, 5, 10, 15, 20, 25, 50 or 100 mg/l were supplemented in half-strength Murashige and Skoog (1/2 MS) liquid or on agar media containing 2% (w/v) sucrose. The results showed that liquid medium supplemented with 15 mg/l chitosan showed the highest relative growth rate (7-fold increase) of PLBs. On 1/2 MS agar medium supplemented with 25 mg/l chitosan gave the highest relative growth rate (4-fold increase). The relative growth rate of G. speciosum PLBs on agar medium was significantly lower than that in liquid medium. Moreover, chitosan, supplemented to agar medium promoted shoot formation but not rooting. However, supplementation at too high a level, such as 100 mg/l can inhibit growth and kill PLBs.

Keywords: Chitosan, Grammatophyllum speciosum, Growth stimulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3410
761 Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

Authors: Nilrudra Mandal, B Doloi, B Mondal

Abstract:

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.

Keywords: Analysis of variance (ANOVA), Central Composite Design (CCD), Response Surface Methodology (RSM), Zirconia Toughened Alumina (ZTA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
760 Magnetic Fluid Based Squeeze Film in Rough Rotating Curved Porous Annular Plates: Deformation Effect

Authors: M. E. Shimpi, G. M. Deheri

Abstract:

This article aims to investigate the performance of a magnetic fluid based squeeze film between rotating transversely rough curved porous annular plates incorporating the effect of elastic deformation. The associated stochastically averaged Reynolds type equation is solved to obtain the pressure distribution leading to the calculation of the load carrying capacity. The results suggest that the transverse roughness of the bearing surfaces affects the performance adversely although the bearing systems register a relatively improved performance due to the magnetization. The deformation causes reduced the load carrying capacity while the curvature parameters tend to nominally increase the load carrying capacity. Besides, the adverse effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetization and the curvature parameters in the case of negatively skewed roughness by suitably choosing the rotational inertia and the aspect ratio, which becomes significant when negative variance occurs.

Keywords: Annular plates curved rough surface, deformation, load carrying capacity, rotational inertia, magnetic fluid, squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
759 Estimating European Tourism Demand for Malaysia

Authors: Zainudin Arsad, Norul Baine Mat Johor

Abstract:

Tourism industry is an important sector in Malaysia economy and this motivates the examination of long-run relationships between tourist arrivals from three selected European countries in Malaysia and four possible determinants; relative prices, exchange rates, transportation cost and relative prices of substitute destination. The study utilizes data from January 1999 to September 2008 and employs standard econometric techniques that include unit root test and cointegration test. The estimated demand model indicates that depreciation of local currency and increases in prices at substitute destination have positive impact on tourist arrivals while increase in transportation cost has negative impact on tourist arrivals. In addition, the model suggests that higher rate of increase in local prices relative to prices at tourist country of origin may not deter tourists from coming to Malaysia

Keywords: origin country, unit root test, cointegration test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
758 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.  

Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
757 Roughness and Hardness of 60/40 Cu-Zn Alloy

Authors: Pavana Manvikar, G K Purohit

Abstract:

The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses.

Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities.

Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness.

This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,

 

Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4

 

Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4

 

High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.

Keywords: Ball burnishing, surface roughness, micro-hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
756 Optimization of Wire EDM Parameters for Fabrication of Micro Channels

Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg

Abstract:

Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.

Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
755 Probabilistic Modelling of Marine Bridge Deterioration

Authors: P.C. Ryan, A.J. O' Connor

Abstract:

Chloride induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete marine structures. This paper investigates the relative performance of alternative repair options with respect to the deterioration of reinforced concrete bridge elements in marine environments. Focus is placed on the initiation phase of reinforcement corrosion. A laboratory study is described which involved exposing concrete samples to accelerated chloride-ion ingress. The study examined the relative efficiencies of two repair methods, namely Ordinary Portland Cement (OPC) concrete and a concrete which utilised Ground Granulated Blastfurnace Cement (GGBS) as a partial cement replacement. The mix designs and materials utilised were identical to those implemented in the repair of a marine bridge on the South East coast of Ireland in 2007. The results of this testing regime serve to inform input variables employed in probabilistic modelling of deterioration for subsequent reliability based analysis to compare the relative performance of the studied repair options.

Keywords: Deterioration, Marine Bridges, Reinforced Concrete, Reliability, Chloride-ion Ingress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
754 Prioritizing Service Quality Dimensions: A Neural Network Approach

Authors: A. Golmohammadi, B. Jahandideh

Abstract:

One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.

Keywords: service quality, customer satisfaction, relative importance, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
753 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
752 Influence of Composition and Austempering Temperature on Machinability of Austempered Ductile Iron

Authors: Jagmohan Datt, Uma Batra

Abstract:

Present investigations involve a systematic study on the machinability of austempered ductile irons (ADI) developed from four commercially viable ductile irons alloyed with different contents of 0, 0.1, 0.3 and 0.6 wt.% of Ni. The influence of Ni content, amount of retained austenite and hardness of ADI on machining behavior has been conducted systematically. Austempering heat treatment was carried out for 120 minutes at four temperatures- 270oC, 320oC, 370oC or 420oC, after austenitization at 900oC for 120 min. Milling tests were performed and machinability index, cutting forces and surface roughness measurements were used to evaluate the machinability. Higher cutting forces, lower machinability index and the poorer surface roughness of the samples austempered at lower temperatures indicated that austempering at higher temperatures resulted in better machinability. The machinability of samples austempered at 420oC, which contained higher fractions of retained austenite, was superior to that of samples austempered at lower temperatures, indicating that hardness is an important factor in assessing machinability in addition to high carbon austenite content. The ADI with 0.6% Ni, austempered at 420°C for 120 minutes, demonstrated best machinability.

Keywords: Austempering, machinability, machining index, cutting force, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
751 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
750 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method

Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu

Abstract:

The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.

Keywords: PEMFC, numerical simulation, optimization, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
749 Effect of Fines on Liquefaction Susceptibility of Sandy Soil

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure.  

Keywords: Bentonite, brittleness index, liquefaction, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
748 Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures

Authors: A. Radwan, A. Elbatran, A. Mehanna, M. Shehadeh

Abstract:

The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity.

Keywords: Corrosion, Reynold’s numbers, sacrificial anode, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
747 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
746 Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Authors: Hisham M. Abourayana, Nuri A. Zreiba, Abdulkader M. Elamin

Abstract:

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Keywords: Plasma polymerization, potentiodynamic test, Contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
745 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics

Authors: Qiuhua Miao, Peng Huang, Yifei Ding

Abstract:

Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.

Keywords: Relative regional total energy, crushing energy, axial segregation characteristics, rotary drum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302
744 Vibration Analysis of Gas Turbine SIEMENS 162MW - V94.2 Related to Iran Power Plant Industry in Fars Province

Authors: Omid A. Zargar

Abstract:

Vibration analysis of most critical equipment is considered as one of the most challenging activities in preventive maintenance. Utilities are heart of the process in big industrial plants like petrochemical zones. Vibration analysis methods and condition monitoring systems of these kinds of equipments are developed too much in recent years. On the other hand, there are too much operation factors like inlet and outlet pressures and temperatures that should be monitored. In this paper, some of the most effective concepts and techniques related to gas turbine vibration analysis are discussed. In addition, a gas turbine SIEMENS 162MW - V94.2 vibration case history related to Iran power industry in Fars province is explained. Vibration monitoring system and machinery technical specification are introduced. Besides, absolute and relative vibration trends, turbine and compressor orbits, Fast Fourier transform (FFT) in absolute vibrations, vibration modal analysis, turbine and compressor start up and shut down conditions, bode diagrams for relative vibrations, Nyquist diagrams and waterfall or three-dimensional FFT diagrams in startup and trip conditions are discussed with relative graphs. Furthermore, Split Resonance in gas turbines is discussed in details. Moreover, some updated vibration monitoring system, blade manufacturing technique and modern damping mechanism are discussed in this paper.

Keywords: Gas turbine, turbine compressor, vibration data collector, utility, condition monitoring, non-contact probe, Relative Vibration, Absolute Vibration, Split Resonance, Time Wave Form (TWF), Fast Fourier transform (FFT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3585
743 On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function

Authors: Gaurav Kumar, Rakesh Kumar Bajaj

Abstract:

The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of  and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.

Keywords: Assignment problem, Interval-valued Intuitionistic Fuzzy Sets, Similarity Measures, score function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
742 Improved IDR(s) Method for Gaining Very Accurate Solutions

Authors: Yusuke Onoue, Seiji Fujino, Norimasa Nakashima

Abstract:

The IDR(s) method based on an extended IDR theorem was proposed by Sonneveld and van Gijzen. The original IDR(s) method has excellent property compared with the conventional iterative methods in terms of efficiency and small amount of memory. IDR(s) method, however, has unexpected property that relative residual 2-norm stagnates at the level of less than 10-12. In this paper, an effective strategy for stagnation detection, stagnation avoidance using adaptively information of parameter s and improvement of convergence rate itself of IDR(s) method are proposed in order to gain high accuracy of the approximated solution of IDR(s) method. Through numerical experiments, effectiveness of adaptive tuning IDR(s) method is verified and demonstrated.

Keywords: Krylov subspace methods, IDR(s), adaptive tuning, stagnation of relative residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
741 Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers

Authors: Y. Galerkin, O. Solovieva

Abstract:

Parameters of flow are calculated in vaneless diffusers with relative width 0,014–0,10. Inlet angles of flow and similarity criteria were varied. There is information on flow separation, boundary layer development, configuration of streamlines. Polytrophic efficiency, loss coefficient and recovery coefficient are used to compare effectiveness of diffusers. The sample of optimization of narrow diffuser with conical walls is presented. Three wide diffusers with narrowing walls are compared. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb.

Keywords: Vaneless diffuser, relative width, flow angle, flow separation, loss coefficient, similarity criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
740 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery

Authors: Seema Biday, Udhav Bhosle

Abstract:

Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.

Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
739 Statistical Properties and Performance of Ecological Indices Based On Relative Abundances

Authors: Gebriel M. Shamia

Abstract:

The Improved Generalized Diversity Index (IGDI) has been proposed as a tool that can be used to identify areas that have high conservation value and measure the ecological condition of an area. IGDI is based on the species relative abundances. This paper is concerned with particular attention is given to comparisons involving the MacArthur model of species abundances. The properties and performance of various species indices were assessed. Both IGDI and species richness increased with sampling area according to a power function. IGDI were also found to be acceptable ecological indicators of conditions and consistently outperformed coefficient of conservatism indices.

Keywords: Statistical ecology, MacArthur model, Functional Diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
738 Relative Injective Modules and Relative Flat Modules

Authors: Jianmin Xing, Rufeng Xing

Abstract:

Let R be a ring, n a fixed nonnegative integer. The concepts of (n, 0)-FI-injective and (n, 0)-FI-flat modules, and then give some characterizations of these modules over left n-coherent rings are introduced . In addition, we investigate the left and right n-FI-resolutions of R-modules by left (right) derived functors Extn(−,−) (Torn(−,−) ) over a left n-coherent ring, where n-FI stands for the categories of all (n, 0)- injective left R-modules. These modules together with the left or right derived functors are used to study the (n, 0)-injective dimensions of modules and rings.

Keywords: (n, 0)-injective module, (n, 0)-injective dimension, (n, 0)-FI-injective(flat) module, (Pre)cover, (Pre)envelope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
737 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth

Authors: T. Qasim, B. El Masoud, D. Ailabouni

Abstract:

This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.

Keywords: All ceramic, dental crowns, relative wear, chewing simulator, cyclic loading, thermally ageing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851