Search results for: Nitrogen Biological Fixation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 776

Search results for: Nitrogen Biological Fixation

506 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: DSAC36-24, organic molecule, adsoprtion ishoterms, adsorption kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
505 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna Mohd Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 150oC.Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: Activated carbon, Palm shell-PEEK, Regeneration, thermal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
504 Density Functional Calculations of N-14 andB-11 NQR Parameters in the H-capped (5, 5)Single-Wall BN Nanotube

Authors: Ahmad Seif, Karim Zare, Asadallah Boshra, Mehran Aghaie

Abstract:

Density functional theory (DFT) calculations were performed to compute nitrogen-14 and boron-11 nuclear quadrupole resonance (NQR) spectroscopy parameters in the representative model of armchair boron nitride nanotube (BNNT) for the first time. The considered model consisting of 1 nm length of H-capped (5, 5) single-wall BNNT were first allowed to fully relax and then the NQR calculations were carried out on the geometrically optimized model. The evaluated nuclear quadrupole coupling constants and asymmetry parameters for the mentioned nuclei reveal that the model can be divided into seven layers of nuclei with an equivalent electrostatic environment where those nuclei at the ends of tubes have a very strong electrostatic environment compared to the other nuclei along the length of tubes. The calculations were performed via Gaussian 98 package of program.

Keywords: Armchair Nanotube, Density Functional Theory, Nuclear Quadrupole Resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
503 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA

Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz

Abstract:

This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.

Keywords: DNA & RNA Models, Relative Rates, Reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
502 Separation Characteristics of Dissolved Gases from Water Concurrently Variable Mixed with Exhalations for the Hollow Fiber Membrane

Authors: Pil Woo Heo

Abstract:

Water contains dissolved oxygen that a fish needs to breathe. It is important to increase the amounts of separation of dissolved oxygen from water for diverse applications using the separation system. In this paper, a separation system of dissolved gases from water concurrently variable mixed with the exhalations using a compressor is proposed. This system takes use of exhalations to increase the amounts of separation of dissolved oxygen from water. A compressor with variable off-time and on-time is used to control the exhalations mixed with inlet water. Exhalations contain some portion of carbon dioxide, oxygen, and nitrogen. Separation of dissolved gases containing dissolved oxygen is enhanced by using exhalations. The amounts of separation and the compositions of carbon dioxide and oxygen are measured. Higher amounts of separation can make the size of the separation device smaller, and then, application areas are diversified.

Keywords: Concurrently, variable mixed, exhalations, separation, hollow fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
501 Total Lipid of Mutant Synechococcus sp. PCC 7002

Authors: Azlin S Azmi, Mus’ab Zainal, Sarina Sulaiman, Azura Amid, Zaki Zainudin

Abstract:

Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30oC and 1% NaNO3.

Keywords: Cyanobacteria, lipid, mutant, marine Synechococcus sp. PCC 7002, specific growth rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
500 Leaf Chlorophyll of Corn, Sweet basil and Borage under Intercropping System in Weed Interference

Authors: F. Zaefarian, M. Bagheri, B. Bicharanlou, G.A. Asadi, V. Akbarpour

Abstract:

Intercropping is one of the sustainable agricultural factors. The SPAD meter can be used to predict nitrogen index reliably, it may also be a useful tool for assessing the relative impact of weeds on crops. In order to study the effect of weeds on SPAD in corn (Zea mays L.), sweet basil (Ocimum basilicum L.) and borage (Borago officinalis L.) in intercropping system, a factorial experiment was conducted in three replications in 2011. Experimental factors were included intercropping of corn with sweet basil and borage in different ratios (100:0, 75:25, 50:50, 25:75 and 0:100 corn: borage or sweet basil) and weed infestation (weed control and weed interference). The results showed that intercropping of corn with sweet basil and borage increased the SPAD value of corn compare to monoculture in weed interference condition. Sweet basil SPAD value in weed control treatments (43.66) was more than weed interference treatments (40.17). Corn could increase the borage SPAD value compare to monoculture in weed interference treatments.

Keywords: Borage, Sweet basil, SPAD, Weed Infestation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
499 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management

Authors: Sefa Aksu, Ünal Kızıl

Abstract:

For this study, a town based soil database created in Gümüsçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.

Keywords: Geostatistics, GIS, Nutrient Management, Soil Mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
498 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects

Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour

Abstract:

In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results has shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.

Keywords: Hydrogen bonding, Density Functional Theory (DFT), Natural bond Orbitals (NBO), cooperativity effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
497 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: Decision tree, water quality, water pollution, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164
496 Influence of Proteolysis and Soluble Calcium Levels on Textural Changes in the Interior and Exterior of Iranian UF White Cheese during Ripening

Authors: I. Fathollahi, J. Hesari, S. Azadmard, S. Oustan

Abstract:

The relationships between Proteolysis and soluble calcium levels with hardness of cheese texture were investigated in Iranian UF white cheese during 90 d ripening. Cheeses were sampled in interior and exterior. Results showed that levels of proteolysis, soluble calcium and hardness of cheese texture changed significantly (p< 0.05) over ripening. Levels of proteolysis and hardness were significantly (p< 0.05) different in interior and exterior zones of cheeses. External zones of cheeses became softer and had higher levels of proteolysis compared to internal zones during ripening. The highest correlation coefficient (r2= 0.979; p<0.01) was observed between hardness and levels of pH 4.6-soluble nitrogen in exterior zones of cheese. These result showed that proteolysis can contribute to textural softening during ripening of Iranian UF white cheese.

Keywords: Calcium, Proteolysis, Softening, Ultrafiltration, White cheese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
495 Influence of Supplemental Glutamine on Nutrient Digestibility and Utilization, Small Intestinal Morphology and Gastrointestinal Tract and Immune Organ Developments of Broiler Chickens

Authors: Sutisa Khempaka, Supattra Okrathok, Laddawan Hokking, Buntita Thukhanon, Wittawat Molee

Abstract:

This study was conducted to investigate the optimum levels of glutamine (Gln) supplementation in broiler diets. A total of 32 one-day-old male chicks with initial body weight 41.5 g were segregated into 4 groups (8 chicks per group) and subsequently distributed to individual cages. Feed and water were provided ad libitum for 21 days. Four dietary treatments were as follows: control and supplemented Gln at 1, 2 and 3%, respectively. The results found that the addition Gln had no negative effects on dry matter, organic matter, ash digestibility or nitrogen retention. Birds fed with 1% Gln had significantly higher villi wide and villi height : crypt depth ratio in duodenum than the control chicks and 2 and 3% Gln chicks. It is suggested that the addition of Gln at 1% indicated a beneficial effect on improving small intestinal morphology, in addition Gln may stimulate immune organ development of broiler chickens.

Keywords: broiler chicken, digestibility, gastrointestinal tract glutamine, glutamine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
494 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif

Abstract:

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
493 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste

Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun

Abstract:

A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.

Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629
492 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber

Abstract:

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Keywords: Classification, High dimensional data, Machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
491 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered safe, quiet, and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon, and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: Adhesive, cryopanel, granules, pellets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
490 Effects of Dry Period Length on, Milk Production and Composition, Blood Metabolites and Complete Blood Count in Subsequent Lactation of Holstein Dairy Cows

Authors: Akbar Soleimani, Alireza Heravi Moussavi, Mohsen Danesh Mesgaran, Abolqasem Golian

Abstract:

Twenty - nine Holstein cows were used to evaluate the effects of different dry period (DP) lengths on milk yield and composition, some blood metabolites, and complete blood count (CBC). Cows were assigned to one of 2 treatments: 1) 60-d dry period, 2) 35-d DP. Milk yield, from calving to 60 days, was not different for cows on the treatments (p =0.130). Cows in the 35-d DP produced more milk protein and SNF compare with cows in treatment 1 (p ≤ 0.05). Serum glucose, non-esterified fatty acids (NEFA), beta hydroxyl butyrate acid (BHBA), blood urea nitrogen (BUN), urea, and glutamic oxaloacetic transaminase (GOT) were all similar among the treatments. Body condition score (BCS), body weight (BW), complete blood count (CBC) and health problems were similar between the treatments. The results of this study demonstrated we can reduce the dry period length to 35 days with no problems.

Keywords: complete blood count, dairy cows, dry period, milk yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
489 Combustion, Emission and Performance Characteristics of a Light Duty Diesel Engine Fuelled with Methanol Diesel Blends

Authors: Mishra Chinmaya, Pal Anuj, Tomar Vishvendra Singh, Kumar Naveen

Abstract:

Combustion, emission and performance characterization of a single cylinder diesel engine using methanol diesel blends was carried out. The blends were 5% (v/v) methanol in diesel (MD05) and 10% (v/v) methanol in diesel (MD10). The problem of solubility of methanol and diesel was addressed by an agitator placed inside the fuel tank to prevent phase separation. The results indicated that total combustion duration was reduced by15.8% for MD05 and 31.27% for MD10compared to the baseline data. Ignition delay was increased with increasing methanol volume fraction in the test fuel. Total cyclic heat release was reduced by 1.5% for MD05 and 6.7% for MD10 as compared to diesel baseline. Emissions of carbon monoxide, hydrocarbons along with smoke were reduced and that of nitrogen oxides were increased with rising methanol contents in the test fuel. Full load brake thermal efficiency was marginally reduced with increased methanol composition in the blend.

Keywords: Combustion, diesel engine, emission, methanol, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3200
488 Low NOx Combustion of Pulverized Petroleum Cokes

Authors: Sewon Kim, Minjun Kwon, Changyeop Lee

Abstract:

This paper is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air is optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Keywords: Petroleum cokes, Staged combustion, Low NOx, Equivalence ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
487 On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Authors: Paola Lecca

Abstract:

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

Keywords: Mathematical structure, algorithmic implementation, biochemical network models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
486 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando

Abstract:

Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.

Keywords: Olive stone, combustion, reaction rate, thermogravimetric analysis, fluidized bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
485 Evaluation of Some Prominent Biomarkers in Rural Type – 2 Diabetes Mellitus Cases in Kanyakumari District, Tamil Nadu, India

Authors: Murugan. A., Jerlin Nirmala. F .

Abstract:

Life is beautiful. But, it is decided by genes, environment and the individual and shattered by the natural and / or the invited problems. Most of the global rural helpless masses are struggling for their survival since; they are neglected in all aspects of life including health. Amidst a countless number of miserable diseases in man, diabetes is becoming a dreaded killer and ramifying the entire globe in a jet speed. Diabetes control continues as a Herculean task to the scientific community and the modern society in the 21st century also. T2DM is not pertaining to any age and it can develop even during the childhood. This multifactorial disease abruptly changes the activities of certain vital biomarkers in the present rural T2DM cases. A remarkable variation in the levels of biomarkers like AST, ALT, GGT, ALP, LDH, HbA1C, C- peptide, fasting sugar, post-prandial sugar, sodium, potassium, BUN, creatinine and insulin show the rampant nature of T2DM in this physically active rural agrarian community.

Keywords: Alanine aminotransferase, Aspartate aminotransferase, Blood urea nitrogen, Glycated haemoglobin, Thyroid stimulating hormone

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
484 Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method

Authors: Moghiman Mohammad, Amiri Maryam, Amiri Amirhosein

Abstract:

The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.

Keywords: Converging and Diverging Duct, Combustion, Diffuser, Diverging Angle, Nox

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
483 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
482 Microfluidic Paper-Based Electrochemical Biosensor

Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi

Abstract:

A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.

Keywords: Multiplex, microfluidic paper-based electrochemical biosensors, biomarkers, biological fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
481 Effect of Different Methods of Soil Fertility on Grain Yield and Chickpea Quality

Authors: Mohammadi K., Ghalavand A., Aghaalikhani M

Abstract:

In order to evaluation the effects of natural, biological and chemical fertilizers on grain yield and chickpea quality, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different organic, chemical and biological fertilizers were investigated on grain yield and quality of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. The highest amounts of yield and yield components were obtained in G1×N5 interaction. Significant increasing of N, P, K, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis ability of the crop. The combined application of compost, farmyard manure and chemical phosphorus (N5) had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: soil fertility, grain yield, chickpea, natural resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
480 Characterization, Classification and Agricultural Potentials of Soils on a Toposequence in Southern Guinea Savanna of Nigeria

Authors: B. A. Lawal, A. G. Ojanuga, P. A. Tsado, A. Mohammed

Abstract:

This work assessed some properties of three pedons on a toposequence in Ijah-Gbagyi district in Niger State, Nigeria. The pedons were designated as JG1, JG2 and JG3 representing the upper, middle and lower slopes respectively. The surface soil was characterized by dark yellowish brown (10YR3/4) color at the JG1 and JG2 and very dark grayish brown (10YR3/2) color at JG3. Sand dominated the mineral fraction and its content in the surface horizon decreased down the slope, whereas silt content increased down the slope due to sorting by geological and pedogenic processes. Although organic carbon (OC), total nitrogen (TN) and available phosphorus (P) were rated high, TN and available P decreased down the slope. High cation exchange capacity (CEC) was an indication that the soils have high potential for plant nutrients retention. The pedons were classified as Typic Haplustepts/ Haplic Cambisols (Eutric), Plinthic Petraquepts/ Petric Plinthosols (Abruptic) and Typic Endoaquepts/ Endogleyic Cambisols (Endoclayic).

Keywords: Ecological region, landscape positions, soil characterization, soil classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4274
479 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract:

Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
478 Gas Injection Transport Mechanism for Shale Oil Recovery

Authors: Chinedu Ejike

Abstract:

The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. Gas injection enhanced oil recovery offers a significant benefit in optimizing recovery of shale oil. This could be either through huff and puff, gas flooding, and cyclic gas injection. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research evaluates the parameters that influence gas injection transport mechanism. Understanding the process could accelerate recovery by two to three times.

Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reservoir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
477 Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis

Authors: Adilah Shariff, Radin Hakim, Nurhayati Abdullah

Abstract:

Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.

Keywords: Biochar, biomass, rubber wood, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804