Search results for: Microgrid power flow optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6336

Search results for: Microgrid power flow optimization

6126 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems

Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis

Abstract:

Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.

Keywords: Economic Dispatch, Non-Convex Cost Functions, Valve Point Loading Effect, Q-Learning, Eligibility Traces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
6125 A Nodal Transmission Pricing Model based on Newly Developed Expressions of Real and Reactive Power Marginal Prices in Competitive Electricity Markets

Authors: Ashish Saini, A.K. Saxena

Abstract:

In competitive electricity markets all over the world, an adoption of suitable transmission pricing model is a problem as transmission segment still operates as a monopoly. Transmission pricing is an important tool to promote investment for various transmission services in order to provide economic, secure and reliable electricity to bulk and retail customers. The nodal pricing based on SRMC (Short Run Marginal Cost) is found extremely useful by researchers for sending correct economic signals. The marginal prices must be determined as a part of solution to optimization problem i.e. to maximize the social welfare. The need to maximize the social welfare subject to number of system operational constraints is a major challenge from computation and societal point of views. The purpose of this paper is to present a nodal transmission pricing model based on SRMC by developing new mathematical expressions of real and reactive power marginal prices using GA-Fuzzy based optimal power flow framework. The impacts of selecting different social welfare functions on power marginal prices are analyzed and verified with results reported in literature. Network revenues for two different power systems are determined using expressions derived for real and reactive power marginal prices in this paper.

Keywords: Deregulation, electricity markets, nodal pricing, social welfare function, short run marginal cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
6124 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
6123 Influence of Distributed Generation on Congestion and LMP in Competitive Electricity Market

Authors: Durga Gautam, Mithulananthan Nadarajah

Abstract:

This paper presents the influence of distributed generation (DG) on congestion and locational marginal price (LMP) in an optimal power flow (OPF) based wholesale electricity market. The problem of optimal placement to manage congestion and reduce LMP is formulated for the objective of social welfare maximization. From competitive electricity market standpoint, DGs have great value when they reduce load in particular locations and at particular times when feeders are heavily loaded. The paper lies on the groundwork that solution to optimal mix of generation and transmission resources can be achieved by addressing congestion and corresponding LMP. Obtained as lagrangian multiplier associated with active power flow equation for each node, LMP gives the short run marginal cost (SRMC) of electricity. Specific grid locations are examined to study the influence of DG penetration on congestion and corresponding shadow prices. The influence of DG on congestion and locational marginal prices has been demonstrated in a modified IEEE 14 bus test system.

Keywords: Congestion management, distributed generation, electricity market, locational marginal price, optimal power flow, social welfare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
6122 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization

Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han

Abstract:

This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.

Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
6121 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
6120 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field

Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna

Abstract:

The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.

Keywords: Ejector, diffuser, multiphase flow, syphon effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
6119 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: Balanced realization, controllability Grammian, electromechanical oscillations, FACTS, Hankel singular values, observability Grammian, POD, PSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
6118 Optimization of Multifunctional Battery Structures for Mars

Authors: James A Foster, Guglielmo S Aglietti

Abstract:

Multifunctional structures are a potentially disruptive technology that allows for significant mass savings on spacecraft. The specific concept addressed herein is that of a multifunctional power structure. In this paper, a parametric optimisation of the design of such a structure that uses commercially available battery cells is presented. Using numerical modelling, it was found that there exists several trade-offs aboutthe conflict between the capacity of the panel and its mechanical properties. It was found that there is no universal optimal location for the cells. Placing them close to the mechanical interfaces increases loading in the mechanically weak cells whereas placing them at the centre of the panel increases the stress inthe panel and reduces the stiffness of the structure.

Keywords: Design Optimization, Multifunctional Structures, Power Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
6117 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: Darrieus wind turbine, VAWT, NACA airfoil, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
6116 Cash Flow Optimization on Synthetic CDOs

Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet

Abstract:

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

Keywords: Synthetic Collateralized Debt Obligation (CDO), Credit Default Swap (CDS), Cash Flow Optimization, Probability of Default, Default Correlation, Strategies, Simulation, Simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
6115 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720
6114 Stability Optimization of Functionally Graded Pipes Conveying Fluid

Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed

Abstract:

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.

Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
6113 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration

Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe

Abstract:

The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.

Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
6112 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method

Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian

Abstract:

In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.

Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
6111 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
6110 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques

Authors: T. J. Jamaleddine

Abstract:

Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.

Keywords: CFD, gas-solids flow, gas purging, species transport, purge column, degasser vessel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
6109 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm

Authors: S. Ganesh

Abstract:

Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.

Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3758
6108 Contribution to the Query Optimization in the Object-Oriented Databases

Authors: Minyar Sassi, Amel Grissa-Touzi

Abstract:

Appeared toward 1986, the object-oriented databases management systems had not known successes knew five years after their birth. One of the major difficulties is the query optimization. We propose in this paper a new approach that permits to enrich techniques of query optimization existing in the object-oriented databases. Seen success that knew the query optimization in the relational model, our approach inspires itself of these optimization techniques and enriched it so that they can support the new concepts introduced by the object databases.

Keywords: Query, query optimization, relational databases, object-oriented databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
6107 Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

Authors: Indar Chaerah Gunadin, Adi Soeprijanto, Ontoseno Penangsang

Abstract:

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Keywords: generation scheduling, steady-state stability limit, REI Dimo, margin stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
6106 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications

Authors: Waleed Abohamad, Amr Arisha

Abstract:

Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.

Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
6105 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: Discrete set, linear combinatorial optimization, multi-objective optimization, multipermutation, Pareto solutions, partial permutation set, permutation, structural graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
6104 Application of Artificial Intelligence for Tuning the Parameters of an AGC

Authors: R. N. Patel

Abstract:

This paper deals with the tuning of parameters for Automatic Generation Control (AGC). A two area interconnected hydrothermal system with PI controller is considered. Genetic Algorithm (GA) and Particle Swarm optimization (PSO) algorithms have been applied to optimize the controller parameters. Two objective functions namely Integral Square Error (ISE) and Integral of Time-multiplied Absolute value of the Error (ITAE) are considered for optimization. The effectiveness of an objective function is considered based on the variation in tie line power and change in frequency in both the areas. MATLAB/SIMULINK was used as a simulation tool. Simulation results reveal that ITAE is a better objective function than ISE. Performances of optimization algorithms are also compared and it was found that genetic algorithm gives better results than particle swarm optimization algorithm for the problems of AGC.

Keywords: Area control error, Artificial intelligence, Automatic generation control, Genetic Algorithms and modeling, ISE, ITAE, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
6103 Design and Control Algorithms for Power Electronic Converters for EV Applications

Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski

Abstract:

The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.

Keywords: Electric Vehicles, Electrical Machines Control, Power Electronics, Powerflow Regulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
6102 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3859
6101 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
6100 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: Available line transfer capability, congestion management, FACTS device, hybrid fish-bee algorithm, ISO, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
6099 Power Transformer Risk-Based Maintenance by Optimization of Transformer Condition and Transformer Importance

Authors: Kitti Leangkrua

Abstract:

This paper presents a risk-based maintenance strategy of a power transformer in order to optimize operating and maintenance costs. The methodology involves the study and preparation of a database for the collection the technical data and test data of a power transformer. An evaluation of the overall condition of each transformer is performed by a program developed as a result of the measured results; in addition, the calculation of the main equipment separation to the overall condition of the transformer (% HI) and the criteria for evaluating the importance (% ImI) of each location where the transformer is installed. The condition assessment is performed by analysis test data such as electrical test, insulating oil test and visual inspection. The condition of the power transformer will be classified from very poor to very good condition. The importance is evaluated from load criticality, importance of load and failure consequence. The risk matrix is developed for evaluating the risk of each power transformer. The high risk power transformer will be focused firstly. The computerized program is developed for practical use, and the maintenance strategy of a power transformer can be effectively managed.

Keywords: Asset management, risk-based maintenance, power transformer, health index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
6098 Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization

Authors: Abhijit Mitra, Harpreet Singh Dhillon

Abstract:

We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.

Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
6097 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830