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Abstract—This paper deals with the coordinated tuning of the
Power System Stabilizer (PSS) controller and Power Oscillation
Damping (POD) Controller of Flexible AC Transmission System
(FACTS) in a multi-machine power systems. The coordinated tuning
is based on the critical eigenvalues of the power system and a model
reduction technique where the Hankel Singular Value method is
applied. Through the linearized system model and the parameter-
constrained nonlinear optimization algorithm, it can compute the
parameters of both controllers. Moreover, the parameters are
optimized simultaneously obtaining the gains of both controllers.
Then, the nonlinear simulation to observe the time response of the
controller is performed.

Keywords—Balanced realization, controllability Grammian,
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[. INTRODUCTION

HE stability of the power system is one of the most

important aspects in the operation and security of
electrical systems, as it refers to the ability of the system to
reach a steady state after a disturbance [1].

Once electric power systems are developed in an
interconnected form in which spontaneous oscillations at low
frequencies in the order of 0.1 to 3 Hz could be presented [2].
These oscillations are caused by faults, increases in charges,
lost control, small changes in the reference voltage regulator
automatic voltage (AVR), and so on. Such fluctuations tend to
stay for a long time, and in some cases, tend to grow causing
the separation of power systems if there is no adequate
damping. Moreover, low frequency oscillations cause
limitations on the ability to transfer power, preventing
transmission lines operating at maximum capacity [1], [2].

Generally, some generators are provided with additional
controls that are PSS which provide additional damping to
oscillations of the generator rotor through auxiliary signs of
stabilization. On the other hand, FACTS can be used to
improve system stability by means of a supplementary control
signal for POD [1], [2]. However, lack of coordination of local
control in the PSS and POD could cause destabilizing
interactions in the power system when both are present.
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Some researches propose a coordination between
generators” PSS and FACTS’ POD controller devices to
improve the overall system performance. Some of these
methods use nonlinear complex simulations; [3] and [4]
propose hybrid fuzzy controllers, and [5] deals with an
optimization problem by solving a sequential quadratic
programming using the dual algorithm.

Other methods are based on the linearization model of
electric power system. First, [6] uses projective controls,
which is expressed as a linear quadratic regulator to obtain a
full-state feedback control. Secondly, [7] is based on the
concept of induced torque coefficients and it proposes an
optimization linear programming whose objective function is
to minimize the weighted sum of the stabilizer gains. The last
one designs a decentralized multivariable excitation
controllers using a linear quadratic regulator [8].

In contrast to these methods, the solution of this paper is a
methodology to coordinate a PSS and POD gains based on an
algorithm of optimization whose objective is to reach a
damping index of critical eigenvalues of the power system by
minimizing the fitness in which the mutual influence of both
PSS and POD controller parameters is considered. The
development of this method requires a dynamic model
reduction order technique based on the product of the
observability and controllability grammians using the
formulation described in these paper [9]-[11].

This paper is organized as: Section II introduces the basic
structure of the employed PSS and POD controllers. Section
III presents the test system used. Section VI presents the
results obtained from the optimized controller gains. Finally,
Section V presents the conclusions.

II. PSS AND POD CONTROLLER

This paper presents a methodology of coordinated tuning of
gains when each controller, PSS and POD, are placed in
generators and FACTS devices. Thus, the block diagram of
typical PSS (Fig. 1) and POD (Fig. 2) is used.

The values of each parameter that comprises the typical
structure are T,,, Ty, Ty, T3, Ty. T,, is a time constant and can
assume values between 3 to 20 s [1], [2], [12], [13]. This
parameter is not critical, and its value depends on the function
and the modes which will be damped [1], [2], [12], [13]. T, /T,
and T3/T, are time constants and must be fixed to provide
damping on the frequency range where the oscillations are
likely to occur [1], [2], [12], [13]. These parameters provide a
phase compensation between the power system plant and the
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PSS controller, and the number of the lead-lag block depends
on the amount of phase compensation that requires the power
system [1], [12]-[14]. The frequency range of interest is
between 0.1 and 5 Hz, where electromechanical oscillations to
damp are placed [12]-[14].

Adw K sTy 14Ty |145sT;
— +
PSS_’1+STW_.1+ST2 1+ sT, J
Washout Phase lead-lag
Vsmi’n
Fig. 1 Block diagram representation PSS [1]
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Washout Phase lead-lag v

smin

Fig. 2 Block diagram representation POD [1]

This paper computes the gains of PSS and POD controllers
simultaneously using a genetic algorithm [15]-[17]. The
primary procedure is as follows: i-Select the input signals for
modal analysis, ii-Reduce the model order for suitable control
design, iii-Compute the coordinated gains of PSS and POD
using a genetic algorithm.

A. Selection of the PSS and POD Controller Input Signal

The aim is to reach the design coordinate of PSS and POD.
The first step is the selection of generators and FACTS
devices where the controllers will be located. The second step
is to select the input signal to both controllers. Therefore, the
linear full-order dynamic model of the system around a
nominal operating point and, after obtaining the matrices of
the system’s state space model, the analysis modal is made
through controllability and observability. The following
properties are the main characteristics of a suitable input
signal:

1) The input signal should be locally measurable.

2) The electromechanical modes to be damped should be
observable in the input signal.

3) The input signal must yield correct control actions.

4) The input signal with best responses are associated with
the frequency of the machine.

B. Model Reduction

The behavior of a dynamic system in low frequency
electromechanical oscillations ranging from 0.1 to 3 Hz, is
usually expressed as a set of nonlinear differential and
algebraic (DAE) equations of the following form [1], [9], [12]:

X =f(x,zu)
0=g(xzu) (1
y = h(x,z,u)
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where f and g are the vectors of differential and algebraic
equations and h is a vector of output equations.

The nominal model system is linearized without the PSS
and POD controllers; thus, the state space model is linearized
around of a critical operating point and can be represented by
(91, (101, [12]:

X = Ax + Bux = Ax + Bu
y = Cx

2

The order reduction technique is based on a computation
algorithm of a subspace of the product of the controllability
and observability grammians using the development propose
in [10] that allows the retention of unstable modes in the
reduced system.

The reduction method is applicable to multivariable systems
(MIMO) with more than one input and one output signals. The
advantage of developing low-order models suitable for control
design applications is that the computational cost is reduced,
and the optimization algorithms are faster.

The Hankel Singular Values (HSV) method was used as the
order reduction method. It is also termed balanced truncation;
this technique is split into: the most important states and the
least important states with poor controllability and
observability.

The least important states are established based on the
values that the HSV brings. The singular value of the product
of controllability and observability grammian is o(PQ) =
diag(oy, 0y, ...,0,), thus o are the HSV of the state space
model system [9].

For stable systems, a balanced realization is an equivalent
realization in which the controllability and observability
grammians are equal and diagonal, and this diagonal forms the
Hankel Singular Values (o). Small entries in ¢ indicate the
states that can be removed to simplify the model.

The balanced realization in ¥, is obtained by a similarity
transformation:

A

B

P,TAP,
P7iB
2 CP,

T L

)

™

where P; is the transformation matrix [10]. Under these
conditions, it is revealed that the grammians of the model
(A, B, C) are similar and diagonal and they are computed by
[9]:

P=ptep T
Q= P1TQP1

4
where P and Q are the solutions of the system of Lyapunov
equations [12]:

PAT + AP + BBT =0
QA+ATQ+C"C=0

)

In (5), 4, B, C are the matrices from the continuous model in
(2) linearized around the operating point. The matrix

1184 1SN1:0000000091950263



Open Science Index, Energy and Power Engineering Vol:11, No:12, 2017 publications.waset.org/10008248.pdf

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering
Vol:11, No:12, 2017

transformation P; which satisfies the balanced realization
definition is termed as a contragredient transformation and is
obtained by:

P, = L,Vx1/2 (6)

where L,,V, and £7%/2 can be determined by using the
Cholesky factors from P and Q, and the singular values
decomposition [11].

When the balanced realization is finished, the next step is to
truncate the new system. The truncation algorithm is based on
the singular values of the matrix product PQ. The HSV are
defined below:

o; = Ai(PQ)l/z @

The truncated model is then applied to obtain the reduced
ignoring the least significant states of the system model [12]:

X =Ax+ Bux =Ax+Bu ®)
y = Crxy = Crx

After reducing the model, the frequency response of both
models, the full order model and the reduced model, are
compared in order to guarantee that at low frequency region
the gain difference is small [12].

C.Optimization Problem Formulation

The aim of the coordination tuning is to left-shift the
electromechanical modes, while minimizing the damping
ratio. The optimization problem is formulated in (9), the
calculation is performed through the weighted sum of the
objective functions:

min/ = @ §interarea T B $arear TV " Sareaz
s.t Ax+ B, =0 ©)
Kmin < Kpss < Kmax
Kmin < Kpod < Kmax
£ >5%

where a, f and y correspond to the weights associated with
each damping ratio &; , respectively. The weights are multiples
major or equal to the unit.

The constraints are the set of algebraic DAE equations in
the operating point such that the damping of each mode will
be greater than a specified value (which may be different for
each mode) and the parameters of each controller as
inequalities.

The mathematical
expressed as:

formulation for damping ratio is
f= o (10)

Ai=0xjw represents the eigenvalues of the

electromechanical modes that will be damped.
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D.Genetic Algorithm Optimization Technique
The optimization problem in (9) is a multi-objective
problem and it can be posed as follows:

1) The minimization of a function that involves weighting
the objective multiples (Damping of each one of
electromechanical modes that are considered).

2) Vector function of multiple damping with weighting
factors.

The pseudocode describing the genetic algorithm is as
follows:

1) Generate an initial population. t = 0.

2) Evaluate the objective function (9), for each one of the
individual.

3) Calculate fitness of each individual.

4) Apply the Selection operator over the N-individuals of the
population.

5) Apply Crossover and Mutation; on the individuals
selected previously.

6) Verify the stop criterion. If it is not satisfied, return to
step 2, incrementing the iteration counter t =t + 1, else,
finish the algorithm execution.

Fig. 3 shows the algorithm for the coordinated tuning based
on genetic algorithms.

Create
Initial
Population

Evaluate jitness (9) for each
individual.

| Apply Selection (N) |

'

| Crossover/Mutation |

|t=t+1 ‘
[

Stop
Criterion?

Fig. 3 Flow chart of the optimization coordinated tuning

The optimization problem formulation in this paper allows
considering all the selected operating points. The multi-
objective function calculates the best gains for each controller
and also it adds damping to electromechanical modes.

Each feasible solution of the optimization problem is
represented by a vector of real numbers X = [Kpss, Kpod]-
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Fig. 4 Kundur’s four-machine two-area modified with SVC [1], [18]

III. KUNDUR’S FOUR MACHINE TWO-AREA TEST SYSTEM

Fig. 4 shows the test system that corresponds to the well-
known Kundur’s power system [1], [18], modelled at
SimPower. The case of study is modified with a SVC device.
In this system, all machines are equipped with static exciters
and one PSS in the second machine located in the area 1, also
one POD located in the SVC FACTS device. For the
coordinated PSS and POD control scheme, the following
considerations are taken into account:

1) The rotor speed deviation is selected as a PSS input signal
and the local signal applied to the POD controller is the
active power flow through the area 1 to area 2. The modal
analysis is carried out to select the candidate signals by
controllability and observability.

2) The test system is simulated for a disturbance which is a
three-phase short circuit of four cycle duration in the
middle of a line between area 1 and area 2.

Fig. 5 shows the active power flow throughout the area 1 to
area 2 when a fault in the middle of the interconnection lines
between area 1 and 2 occurs. As it is shown, the system
presents undamped oscillations leading to instability.

The system dominant eigenvalues without any
supplementary controller are given in Table I. From this, the
system has two local modes and one inter-area mode with a
damping ratio less than 5%. These modes are the critical
electromechanical modes.

A modal analysis shows the three dominant modes in Table
I, and the first one is an inter-area mode (w, = 0.64 Hz)
involving the whole area 1 against area 2. The second one is a
local mode of area 1 (w, = 1.15 Hz) involving this area’s
machine against each other, and the last one is a local model
of area 2 (w,, = 1.12 Hz) involving the other machines against
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each other.

TABLEI
EIGENVALUES OF TEST SYSTEM — BASE CASE

Eigenvalue Frequency Hz Damping Ratio
0.1157 +4.0633i 0.6461 -0.0284
-0.6564 + 7.2825i 1.1590 0.0897
-0.6822 + 7.05081i 1.1221 0.0963

700

1] 2 4 -] 8 10 12 14
time(s)

Fig. 5 Active power flow through interconnection of area 1 to area 2 -
without supplementary control

The range of Bode Diagram shows the behavior of the
reduced model in low frequency and it includes the local and
inter-area modes. The errors in the reduced model are small,
and the expected result is great for the design of the
controllers.
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Fig. 6 Frequency of the original and the reduced 18" order system

A. Controller Parameters

Table II defines the boundary limits for PSS and POD
gains, taken from the previous researches [1], [2], [19], [20].
The PSS and POD consist of three blocks; a phase
compensation block, a signal washout and a gain.

TABLEII
CONTROLLER PARAMETERS
Range Tw Ty T,

1 <K <200 10s 0.06s  0.02s

The phase compensation should maximize the bandwidth
within which lag phase should remain at less than 90°,
because if it exceeds 90°, damping will decrease by increasing
the gain [13]. The frequency at which the compensation phase
reaches 90° is f, = 1/2m, /T, T,, and the values of T; and T,
could be calculated by f.. Greater f. means a greater
bandwidth, but this result represents a reduction in the
damping of the local modes, to achieve a better damping in the
local modes f. < 5 Hz or to be around this value [13].

The washout block has the variable T, and is chosen to give
bandpass effect to the carrying signals that contain the local
and inter-area modes [9]. For local modes, T,, =1 —25s is
satisfactory [1], [14]. For inter-area modes, T, = 10 — 20 s is
necessary [1], [14]. An improvement in the first swing
stability is achieved T,, = 10 s.

The gain K should be set at a value corresponding to the
maximum damping ¢; for this reason, this variable has an
interval in which the algorithm will choose the best value.

Only the leading compensation block is taken account and
its variables are assumed as shown in Table II. The
optimization function has been applied to search for the
optimal gains of the PSS and SVC POD controller.

B.Base Case with &> 5%

The optimization problem is performed for different
damping ratios to observe the sensibility, and the weighting
factors are @« = 50, § = 25, and y = 25. The damping ratio
minor requires a greater weight.

Fig. 7 shows the Pole-Zero map for the case basis with a
damping ratio higher than 5%.
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Table III presents the gains of both controllers with a
damping ratio higher than 5%.

TABLEIII
OPTIMIZED CONTROLLER PARAMETERS — DAMPING 5%
K Ty Ty T, S
PSS 38.531 10.0s 0.06s 0.02s 0.05
POD 36.965 10.0s 0.06s 0.02s
Pole-Zero Map s
8. T T T - T ™ o T
{09055 . 0.075. 0033 003 0022 001 7 |
\ :
[ F i M g 1
N El |
G L0.1? : ) \_.\ 3 .4 |
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= - N $
§ 21035 oM i |
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= ol L% : \_\';,. . -
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-6 i _/-'/ i 4

IK) o : ¥, .
Laios* ™ 0.075° 0057 003 0022 001 7
08 07 06 05 -04 03 02 01 B 01 02
Real Axis (seconds™)

Fig. 7 Diagram of poles and zeros base case
C.Damping &> 8%
Fig. 8 shows the Pole-Zero map for an increasing the

damping ratio higher than 8%. Table IV presents the gains of
both controllers with a damping ratio higher than 8%.

“loar P

6 -

TABLE IV
OPTIMIZED CONTROLLER PARAMETERS — DAMPING 8%
K T, T, T, g
PSS 53.336 10.0s 0.06s 0.02s 0.08
POD 52911 10.0s 0.06s 0.02s
Pole-Zero Map 8
B¢ - — = == £ — . .
°'1°_5Xxg”35-. 0.052 0.035 0.022 001 7 |
< - ~ 3 &
b 4
. & J
4 047 t & |
2 13 |
§ 2}0.35 2 |
g i ‘
2 o _|
2 e G
g -2 +0:35 . E- P 1
o e |
E-4 % - —|

il L
E_o.ws*",e_’ms 0.052 003 0.022 001
08 L7 -08 05 -04 03 02 01
Real Axis (seconds™")

Rl 0 N

0.1 0.2

Fig. 8 Diagram of poles and zeros with &> 8%

D.Damping ¢ > 10%

Fig. 9 shows the Pole-Zero map for an increasing the
damping ratio higher than 10%. Table V presents the gains of
both controllers with a damping ratio higher than 10%.
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Fig. 9 Diagram of poles and zeros with &> 10%

TABLEV
OPTIMIZED CONTROLLER PARAMETERS — DAMPING 10%
K TW T1 Tz é
PSS 71.570 10.0s 0.06s 0.02s 0.10
POD 67.881 10.0s 0.06s 0.02s

Figs. 7-9 show the dominant eigenvalues of the test system
with PSS and POD controllers, and it is clear that the system
with both controllers is stable.

IV. COMPARISON WITH A DIFFERENT OBJECTIVE FUNCTION

The proposed method is compared with [21]. For a damping
of 5%, the gains obtained with the optimization problem
formulated (CDI) at [21] are Kpss= 69.9 and Kpop= 64.7.

Figs. 10-13 show the comparison results. It can see that the
controllers computed by the proposed method preserve the
stability under large disturbances. When the fault occurs, the
controllers damp the electromechanical oscillations presented
in the system.

It is also clear that when the gain of both controllers is
increased, the local modes shift more to the left semi plane,
and the damping ratios are more favorable.

Fig. 11 shows the electrical power oscillations at generator
2 for the different objective function. As it is observed in the
first period the oscillation, the power electric decreases when
the fault occurs, but the responses of both controllers are fast,
and after few seconds, the electrical power returns to the
original value time.

Fig. 12 shows the oscillations in the frequency at generator
2. Once the fault occurs, the machine accelerates. The
frequency oscillations are different for both techniques
although, with the proposed method, generator 2 has
decelerations softer than CDI. The frequency at generator 2
stabilizes faster than other generators because the local
controller located in this machine.

Fig. 13 shows the SVC voltage bus for the different
objective functions. The peak value of voltage (1.07) which
has an overshoot (7.1%) is normalized in the second swing,
entering the safe operating limit. The POD controller provides
damping overall to the power system and improves the
transient stability.
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Fig. 11 Power Generation at Generator 2
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Fig. 12 Frequency behavior - Generators 1 and 2

V.CONCLUSION

This paper has presented a methodology for the coordinated
tuning of the PSS and POD controller based on an algorithm
optimization. The methodology is based on the linearized
power system model and parameter-constrained nonlinear
optimization technique.

The reduced model can be used to facilitate the design of
damping controllers and it has been demonstrated with a
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reduced model of approximately 1/5" of the size of the

original model.

—r)
J

0 2 4 6 8 10 12 14 16 18 20

time(s)

Fig. 13 SVC bus voltage behavior

The results obtained from the test system using the
coordinated tuning method revealed that the adequate damping
could be achieved by increasing the gains of both controllers.

Although the SVC is simulated in the proposed test system,
the algorithm is generally applicable to the other types of
FACTS device.
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