
 

 
Abstract—Traffic Management and Information Systems, which 

rely on a system of sensors, aim to describe in real-time traffic in 
urban areas using a set of parameters and estimating them. Though 
the state of the art focuses on data analysis, little is done in the sense 
of prediction. In this paper, we describe a machine learning system 
for traffic flow management and control for a prediction of traffic 
flow problem. This new algorithm is obtained by combining Random 
Forests algorithm into Adaboost algorithm as a weak learner. We 
show that our algorithm performs relatively well on real data, and 
enables, according to the Traffic Flow Evaluation model, to estimate 
and predict whether there is congestion or not at a given time on road 
intersections. 
 

Keywords—Machine Learning, Boosting, Classification, Traffic 
Congestion, Data Collecting, Magnetic Loop Detectors, Signalized 
Intersections, Traffic Signal Timing Optimization. 

I. INTRODUCTION 
RANSPORTATION systems are an integral part of a 
modern day society, designed to provide efficient and 

economical movement between the component parts of a 
country and offer maximum possible mobility to all citizens. 
Road transportation is a critical link between all the other 
modes of transportation and their proper functioning. 
Signalized intersections, as a critical element of an urban road 
transportation system, regulate the flow of vehicles through 
urban areas. As a result, traffic flowing through signalized 
intersections is filtered by the signal system causing vehicular 
delays, which increases the total travel time through an urban 
road network, thus resulting in a reduction in the speed, 
reliability, and cost-effectiveness of the transportation system. 
Furthermore, longer delays yield to degradation of the 
environment by increasing air and sound pollution. For all 
these reasons, it is important to predict and minimize these 
delays. The model commonly used to evaluate traffic 
congestion called the “Traffic Flow Evaluation” model, see 
[13]. To obtain training data, most systems rely on a network 
of sensors to estimate traffic parameters in real-time. 
Currently, the dominant technology for this purpose is the use 
of magnetic loop detectors, which are embedded underground  
at almost every urban intersection and measure traffic 
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parameters of vehicles passing above them. In this model, the 
criterion of interest for prediction is the Level Of Service 
(LOS) for each intersection, namely at which cycle of the 
signal light a vehicle will cross the intersection in mean. This 
quantity depends on the signal cycles (red and green lights) 
and also on the occupancy value, which is the average time a 
given car stands over the detector per signal cycle. Note that 
the occupancy value and the signal setup depend on many 
other important parameters such as, for example, the hour and 
day of measurements; we refer to [13] for an exhaustive 
description of all parameters. According to the Division of 
Transportation and Highways Engineering determination, 
traffic flow will be considered as congestion if No. of signal 
cycles till the vehicle will cross the junction > 4. Several 
software, such as ''PATH'' (UC Berkeley) and ''NISS Digital 
Government II'' (DGII) have been developed to deal with the 
computation of the LOS. Nevertheless, they focus more on 
data analysis, whereas little is done in the sense of prediction. 
Namely, these methodologies take the time information into 
little account, thus losing valuable information for traffic 
control. The objective of this study is to provide an advanced 
methodology of identification and prediction of urban traffic 
obstructions. In this contribution we present a methodology in 
order to predict and minimize incoming traffic flow 
congestion. The paper is organized as follows: Section 2 
presents an overview of Adaboost (see [16]) and Random 
Forests introduced in [1]. Section 3 details our model and the 
proposed method of prediction; this approach uses Random 
Forests as a first predictor (also called weak learner in further 
sections) and combines it within a committee framework 
AdaBoost, in order to boost its accuracy. The proposed 
algorithm can be used as well for the optimization of the 
signal settings over time. An application on real data is 
presented in Section 4, which shows the adequacy of the 
proposed method, and shows experiment and results. Section 
5 details our conclusions.  

II. ALGORITHMIC PART  

A. AdaBoost 
The main idea of boosting algorithms is combining many 

simple and moderately accurate classifiers (called weak 
classifiers) into a single, highly accurate classifier for the task 
at hand. The weak classifiers are trained sequentially and, 
conceptually, each of them is trained mostly on the examples, 
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which were most difficult to classify, by the preceding weak 
classifiers. The boosting algorithm takes as input a training set 
of m examples S={(x1,y1),…,(xm,ym)} where each instance xi 
is a vector of attribute values that belongs to a domain or 
instance space X, and each label yi is the class label associated 
with xi that belongs to a finite label space Y. In this 
contribution we will only focus on binary classification 
problems, that is Y={-1,+1}.  The final classifier, h, is 
constructed by a weighted vote of the individual classifiers 
h1,h2,…,hm. Each classifier is weighted according to its 
accuracy for the distribution pl that it was trained on. We 
present as a reminder the pseudo-code of the "classic" 
Adaboost, and refer to [9] for further results on this algorithm. 
• Input: a set S, of m labeled examples: 

S=((xi,yi),i=(1,2,…,m)), with labels in Y. 
• Learn (a learning algorithm) 
• A constant L. 
[1] Initialize for all i: 

m
iwl

1)( =              initialize the weights 

[2] for l=1 to L do 
[3] for all i: 

∑
=

i
l

l
l iw

iwip
)(

)()(         compute normalized weights 

[4] hl:=Learn(S,pl)            call Learn with normalized weights 
[5] )]([)( iil

i
ll yxhip ≠= ∑ε  call Learn with normalized weights 

[6] thenif l 2
1>ε                           calculate the error of hl 

[7] L=l-1 
[8] go to 12 
[9] 

l

l
l ε

εβ
−

=
1

 

[10] for all i: ]([1
1 )()( iil yxh

lll iwiw ≠−
+ = β      compute new weights 

[11] end for 
[12] Output: ∑

=∈
==

L

l
l

lYy
final yxhxh

1

])()[1(logmaxarg)(
β

 

As we can see in this algorithm, it is necessary to define at 
first a learning algorithm. For instance, we can choose 
Random Forests algorithms, which are detailed in the 
following section. 

B. Random Forests 
Breiman [1] has developed an ensemble classification 

approach that displayed outstanding performance with regard 
prediction error on a suite of benchmark datasets. This 
development, known as  “Random Forests”, is a combination 
of tree predictors such that each tree depends on the values of 
a random vector sampled independently and with the same 
distribution for all trees in the forest. The generalization error 
for forests converges a.s. to a limit as the number of trees in 
the forest becomes large. The error of a forest of tree 
classifiers depends on the strength of the individual trees in 
the forest and the correlation between them. Internal estimates 
monitor error, strength, and correlation and these are used to 
show the response to increasing the number of features used 

in the splitting. The common element in all of these 
procedures is that for the k-th tree, a random vector kθ  is 
generated, independent of the past random vectors 11 −kθθ K , 
but with the same distribution, and a tree is grown using the 
training set and kθ , resulting in a classifier h(x, kθ ) where x is 
an input random vector. For instance, in bagging, the random 
vector θ  is a random sample of size N chosen with 
replacement from the N examples of the training set. After a 
large number of trees are generated, they “vote” for the most 
popular class. The pseudo-code of Random Forests is as 
follows:  
[1] Initially select the number K of trees to be generated. 
[2] For k=1 to K do 
[3]      A Vector kθ is generated 
[4]      Construct Tree ),( kxh θ=  using any decision tree   

       algorithm. 
[5]      Each Tree casts 1 vote for the most popular class at X. 
[6]      The class at X is predicted by selecting the class with   
          max votes. 
[7]      Return a hypothesis lh .  
[8] End For 
 

One practical interest in Random Forests is that it performs 
nicely even in the case of missing data in X, since some rules 
of replacement for the missing data can be plugged-in, like the 
median of all obtained values as stated in Breiman [1]. This 
often occurs in our situation; say if some loop detectors are 
broken. Another advantage of the Random Forest paradigm is 
that there is no need for cross-validation or a separate test set 
to get an unbiased estimate of the test set error. Indeed, this 
error is estimated internally, during the run, as follows: each 
tree is constructed using a different bootstrap sample from the 
original data. About one-third of the cases are left out of the 
bootstrap sample and not used in the construction of the k-th 
tree. We put each case left out in the construction of the k-th 
tree down the k-th tree to get a classification. That way, a test 
set classification is obtained for each case in about one-third 
of the trees. At the end of the run, take j to be the class that 
got most of the votes every time case n was oob (out-of-bag). 
The proportion of times that j is not equal to the true class of n 
averaged over all cases is the oob error estimate. This method 
has proven to be unbiased in many tests [1].  

III. METHODOLOGY: THE ADABOOST-RANDOM FOREST 
PROCEDURE 

   When combining Adaboost and random forest methods, we 
can distinguish two possible ways. The first one is “boost in 
forest”, where an AdaBoost classifier is built for each random 
vector kθ  (i.e., a collection of variables), and to get by that 
sequences of “simple” AdaBoost classifiers, each with small 
number of variables. Instead, we chose a second approach, 
which uses Random Forests as a weak learner. The 
philosophical idea of the weak learner algorithms is to find 
quickly weak assumptions with moderate error rate, since it is 
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clear from a numerical point of view that AdaBoost would 
work faster with simple weak learners than with learners that 
build forests of trees, which is of interest in our real-time 
application.  

A. Advantages of the Combination 
 The final classifier of this approach (AdaBoost 

algorithm with random forest as weak learning) 
combines the good performances of Random Forests 
and Adaboost, we can therefore expect it to be very 
accurate with minor misclassification and strong 
predication ability. 

 It has an effective method for dealing with missing 
data and maintains accuracy when a large proportion 
of the data are missing. 

 It is an effective method for predication of multi-
class classification problems. 

 Note also that using Random Forests as a weak 
learner in AdaBoost enables to choose, in Step 6 of 
the Random Forest algorithm, a way of prediction 
depending on the weights, which could give better 
results. 

 Because the new algorithm using random forests as 
weak learner and boosting unbiased classification, 
there is no need for cross-validation for “Adaboost-
RandomForests” algorithm. 

 
We present results on a known dataset (satimage), in order 

to validate the proposed method experimentally. Fig. 1 
illustrates the differences between a standard weak learner 
(namely, a threshold) and a Random Forest used a weak 
learner. We can see that the choice of Random Forest leads to 
better results on the test error. Note also that Drucker obtained 
in [3], using C4.5 decision trees as weak learners a test error 
of 0.1 on the same dataset, for a number of cycles of the same 
magnitude. The proposed method thus performs relatively 
well, compared to a more refined approach as decision trees. 

 
 
Fig. 1 Error curve for AdaBoost algorithm with classical weak-
learner (threshold), and with Random Forest as weak learners 

 
Fig. 2 illustrates the performances of the proposed 

algorithm in the case of missing data. In this experiment we 

randomly withdrew about 20% of the train and test data. 
Following Breiman [1], a possible way to replace missing data 
is to take the median of all explicit variables of X. Here we 
used a nearest neighbors approach, that is replace the missing 
data by the mean of the nearest components of X around this 
missing value. This makes sense physically, as each line of X 
also characterizes in our application a line of the road, thus it 
is reasonable to assume that the traffic state in a highway is 
the same in every line. We can see that missing data do not 
affect much the efficiency of the method. 

 

 
Fig. 2 Error curve for AdaBoost algorithm with Random Forest as 
weak learners, with (median of all explicit variables, and the mean  

of the nearest components of X around this missing value) / without 
missing data 

 

B. Use of AdaBoost-Random Forest for Prediction 
We now discuss how the proposed algorithm can be used in 

order to predict traffic congestion. In order to do that, it is 
necessary to explain more explicitly how our data depend on 
time. Clearly traffic information can vary according to both 
days and hours. In this section, we will denote by tdnmX ,,× a 

dataset of size m with n features, collected on day d and at 
hour t and by tdmY ,,1× the class labels associated to tdnmX ,,× . 

The problem of prediction is therefore, given a dataset 

tdnmX ,,×  known for every t, to estimate ttddmY Δ+Δ+× ,,1~ , where 

Δd and Δt respectively define a variation of day and a 
variation of hour. The proposed estimation procedure can then 
be decomposed in four steps: 

i. Collect two samples of data, tdnmX ,,× and 

ttdnmX Δ+× ,, ,   Δt > 0,  

ii. Compute the class labels ttdmY Δ+× ,,1 ,  

iii. Compute a new training set dnmZ ,1+× , using 

tdnmX ,,× and ttdmY Δ+× ,,1  by concatenation, 

that             is 
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];[ ,,1,,,1 ttdmtdvmdnm YXZ Δ+××+× = ,  

iv. Collect the test set tddnmX ,,~ Δ+× (Δd > 0), 

and compute ttddmY Δ+Δ+× ,,1~  using the 

AdaBoost-Random Forest algorithm on 

dnmZ ,1+× and tddnmX ,,~ Δ+× . 

IV. APPLICATION TO TRAFFIC ANALYSIS AND PREDICTION 
As mentioned, control of signalized intersections is a 

critical element to optimize urban road transportation systems. 
We present in this section an application of our prediction 
method to the minimization of time delays at intersection. 
Indeed, if predicted early enough, say half an hour before the 
congestion actually happens; traffic control systems can 
change the signal timing plans according to optimization 
process of signalized intersections, thus allowing 
circumventing traffic congestion before it actually happens. 
We briefly describe in the next section data collection for 
traffic control, and present results on the proposed method. 
The reader interested in a complete description of how to 
build a dataset in that framework should refer to [13].  

A. Data Set Collection: A Quick Overview 
Traffic management and information systems (TMIS) 

currently rely on a system of magnetic loop detectors, which 
are buried underneath at almost every urban intersections and 
which measure traffic parameters of vehicles passing over 
them. Table I is an example of the data set (training and 
testing set) collected by Jerusalem Traffic Flow Management 
Control and used by our system.  

 
TABLE I 

EXAMPLE TO TRAIN FILE / TEST FILE 
DAY TIME INT DET LINK POS GRE DIS VOL OCC Y 

1 7:00 20 20- 
24 

24 2 25 40 24 21 1 

1 7:00 30 30- 
33 

33 1 20 35 76 33 -1 

1 7:00 40 40- 
42 

42 3 30 40 18 12 1 

. . . . . . . . . . . 
 

We briefly describe the explanatory variables in a train or 
test file: Day is the day number (from 1=Sunday to 
7=Saturday), Time is the time when a vehicle passes over a 
given detector, Gre is the green light duration, Vol is the 
number is vehicles passing a detector per light cycle, Occ is 
the average that a car spends on a given detector and Y is our 
label class, with value 1 if congestion happens and -1 
otherwise. The variables Det (Detector ID), Dis (distance 
between the detector and the stop line), Int (Intersection ID), 
Pos (detector position from right (1=right, 2= two from 
right...)) and Link (lane ID) characterizes a given intersection, 
and their description will be omitted here. 
 

B. Traffic Flow Evaluation Model (Determination of 
Hypothesis Class for Train File) 

Data collected from detectors regarding traffic flow in 
signalized intersections are evaluated according to the 
following model, which was developed in [13]. Shortly, 
identification of traffic congestion is based on the occupancy 
value (which may be deduced from the measurements) and the 
saturation level value, which depends on the programming of 
traffic light and capacity and is calculated according to the 
green light duration allowed to each vehicle. The main 
disadvantage of using the saturation level as a measure of 
performance is that it is impossible to measure demand on the 
detectors, instead we have access only to the volume of traffic 
that succeeded in passing over them. The capacity constitutes 
an upper bound approximately to this value. Upon entrance to 
signalized intersections, where detectors are in use and during 
the red light period, the routine queue arrives to the detector, 
the absolute value of occupancy that identifies traffic 
congestion is nonexistent. The interconnection between the 
occupancy measured on the detectors and the quality of the 
traffic flow depend on the green light duration allowed each 
vehicle upon entrance to the junction. Therefore, the 
determination that occupancy value confirms traffic 
congestion is not an absolute determination and is only 
relative to the expected value, which reflects the duration of a 
green light for each vehicle upon entrance to the junction. For 
identification of traffic congestion and determination of 
''critical occupancy value'' defined as expected occupancy in 
the situation demand (per lane) is identical to capacity. This 
given values can be calculated. The decision making process 
for the determination of traffic flow quality will be executed 
according to the following stages: 
1. A calculation of critical occupancy value and 

saturation level. 
2. An estimation of traffic flow quality in the lane based 

on the comparison between actual occupancy and 
critical occupancy, and saturation level. 

3. An estimation of traffic flow quality in the segment 
(link) based on traffic flow situation in lane. 

Assuming that at the end of the green light period there is no 
queue on the stop line, it is possible to describe traffic 
phenomenon in the access to the junction in as follows: at the 
beginning of the red light period, the vehicles passing over the 
detector with free speed, slow down near the stop line, and 
stop at the edge of the queue which begins to form near stop 
line. In this time period, the volume of vehicles measured by 
the detector is identical to the demand, and critical occupancy 
is identical to the capacity. Continuation of this red light 
period, when the edge of the queue begins to approach the 
detector (assuming that the distance between the detector and 
the stop line ''35m''), the speed of the vehicles begin to reflect 
approach to the queue, which means that the speed is slower 
than the speed of free journey. Therefore progressively the 
vehicles increase traffic volume. At certain values of distance 
between the detectors and the stop line, and during the red 
light period, a queue may approach the detector, and for this 
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short while Volume =0 and Occupancy =100%. This 
phenomenon continues until the end of the red light period 
and on the beginning of the green light period. At this time, 
two phenomena occur in parallel. In the stop line, the process 
of queue release begins and vehicles continue to arrive and 
join the edge of the queue. Two these phenomena can be 
describe as shock wave. When two shock waves meet, the last 
car in the queue begins to move. The speed characteristics of 
the vehicles passing over the detector during the release of the 
queue are similar to the speed characteristics of queue 
accumulation, but in inverse direction. The speed of a vehicle 
increases until it reaches free speed. A simplified calculation 
of critical occupancy was carried out and three types of 
situations were defined: 
1. Journey at free speed on the detector in the worth volume   
    to the capacity. 
2. Journey at queue release speed on the detector and in the  
    volume of saturation flow. 
3. Stopping on the detector (Volume =0).  
 

Fig. 3 is a graphical summary pf all possible situations 
taken into account in our procedure.  

 

 
 

Fig. 3 The graph describes process of accumulation of the queue and 
his release (as in Mahalel and Gal-Tzur [13])  

 
In this theory the vehicles joining the queue move rapidly 

and steady until joining the queue, and also depart rapidly and 
steady immediately upon release from the queue. We can see a 
point in the time and in the expanse at which the queue arrives 
at the detector, and a point at which the queue begins to exit, 
the point of the shocks wave of queue release reaches the 
detector. The time period between these two points is the 
range that the vehicles stand on the detectors. This model 
allows to calculation of Level of Service (LOS) of the 
intersection, or simply ''at which cycle of the signal light the 
vehicle will cross the intersection''. According to the Division 
of Transportation and Highways Engineering determination, 

traffic flow will be considered as congestion if the vehicle will 
cross the intersection at the fourth or more cycle of the signal. 
Consequently, given traffic parameters previously described, 
it is possible to compute the Level of Service (LOS), roughly 
1 if LOS considers it as under-congestion and -1 otherwise. 
Those data will be used as labels. 
 

C. Experimental Setup and Results 
The idea of the prediction procedure, which is explained in 

the previous section, can be decomposed in these two steps: 

)(

)(

,,1~,,~

,,1,,

***

*

fileTestYX

filetrainYX

ttdmtdnm

ttdmtdnm

Δ+××

Δ+××

→

→
 

Jerusalem Traffic Management and Information Systems 
collected the data used in our experiment. The algorithm is 
trained on this train file (X is the samples of traffic data, with 
matrices size m x n which were produced from specific date d 
and specific time t with class labels m* which were produced 
from same date d but from different time t+Δt), and the test 
samples ( m~  which produce from latterly date d* and specific 
time t) were classified by the trained classifier. Because the 
algorithm classifier labels of future times, it is actually 
predication of traffic flow. Back to our experiment, training 
sets contains samples of data for one week (d=1.10-7.10) 
computed at (t=07:00) with class labels obtained using the 
''evaluation of the traffic flow in the signal intersection model'' 
at time (t+Δt=07:30). Test sets contain samples of data 
collected the following week (d+Δd=8.10-15.10) at (t=07:00) 
in order to predict class labels for (d+Δd) at time (t+Δt). The 
results are displayed in Fig. 4.  
 

 
Fig. 4 First prediction results on Jerusalem data set: one week predict 

one week later 
 

We also used a test set made of data for one day 
(d+Δd=10.10) at (t=07:00) in order to predict the class labels 
(d+Δd) at time (t+Δt). Results are displayed in Fig. 5. 
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Fig. 5 First prediction results on Jerusalem data set: one week predict 

one day later 
 
In order to check the quality of the traffic prediction, we 

also used the microscopic traffic simulator MITSIM [14]. This 
simulator represents networks at the lane level and simulates 
movements of individual vehicles using car-following, lane 
changing, and traffic signal response logic. Network of 
Jerusalem transportation system with approximately 100 
intersections, with real data of signal timing and similar 
vehicles movements to the testing set were implemented to 
simulate traffic in Jerusalem. The cross-validation was done as 
follows: (a) run the simulator with different types of origin-
destination data and gets output, (b) create train files for the 
machine learning from the output, (c) creation of the test files 
from origin-destination data, (d) predict traffic congestion, (e) 
run the simulation with test files as origin-destination data, 
and get output, and (f) compare the output of test files with the 
predicted values. We found an error rate of approximately 7%. 
In comparison, the naive predictor (consisting in the 
estimation of the future class labels by its current value) gives 
an error rate of 16%. 

V. CONCLUSION 
In this paper we addressed the issue of traffic congestion 

prediction, using a hybrid Adaboost-Random Forest 
Algorithm. A new method of prediction was proposed, which 
gives very promising results on both simulations and real data. 
The optimization of traffic lights according to given 
predictions, at well as a numerical study of its efficiency, 
should be investigated in further contributions. 
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