Search results for: Methane sulfonic acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 858

Search results for: Methane sulfonic acid

138 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).

Keywords: Bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
137 Durability of Concrete with Different Mineral Admixtures: A Review

Authors: T. Ayub, N. Shafiq, S. U. Khan, M. F. Nuruddin

Abstract:

Several review papers exist in literature related to the concrete containing mineral admixtures; however this paper reviews the durability characteristics of the concrete containing fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ash (RHA). Durability related properties reviewed include permeability, resistance to sulfate attack, alkali-silica reaction (ASR), carbonation, chloride ion penetration, freezing and thawing, abrasion, fire, acid and efflorescence. From review of existing literature, it is found that permeability of concrete depends upon the content of alumina in mineral admixtures, i.e. higher the alumina content, lesser the permeability which results higher resistance to sulfate and chloride ion penetration. Highly reactive mineral admixtures prevent more ASR and reduce efflorescence. The carbonation increases with the mineral admixtures because higher water binder ratio and lesser content of portlandite in concrete due to pozzolanic reaction. Mineral admixtures require air entrainment except MK and RHA for better resistance to freezing and thawing.

Keywords: Alkali silica reaction, carbonation, durability, mineral admixture, permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6808
136 Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites

Authors: Farid Amidi-Fazli, Neda Amidi-Fazli

Abstract:

Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.

Keywords: Starch, EVOH, nanocrystalline cellulose, Hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
135 A Nanosensor System Based On Disuccinimydyl–CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Authors: R. F. Ajayi, U. Sidwaba, U. Feleni, S. F. Douman, E. Nxusani, L. Wilson, C. Rassie, O. Tovide, P. G. L. Baker, S. L. Vilakazi, R. Tshikhudo, E. I. Iwuoha

Abstract:

Pyrazinamide (PZA) is among the first-line pro-drugs  in the tuberculosis (TB) combination chemotherapy used to treat  Mycobacterium tuberculosis. Numerous reports have suggested that  hepatotoxicity due to pyrazinamide in patients is due to inappropriate  dosing. It is, therefore necessary to develop sensitive and reliable  techniques for determining the PZA metabolic profile of diagnosed  patients promptly and at point-of-care. This study reports the  determination of PZA based on nanobiosensor systems developed  from disuccinimidyl octanedioate modified Cytochrome P450-2E1  (CYP2E1) electrodeposited on gold substrates derivatised with  (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs  nanocomposites. The rapid and sensitive amperometric PZA  detection gave a dynamic linear range of 2µM to 16µM revealing a  limit of detection of 0.044µM and a sensitivity of 1.38µA/µM. The  Michaelis-Menten parameters; KM, KM app and IMAX were calculated to  be 6.0µM, 1.41µM and 1.51x10-6 A, respectively, indicating a  nanobiosensor suitable for use in serum.

Keywords: Cytochrome P450-2E1, Disuccinimidyl octanedioate, Pyrazinamide, Tuberculosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
134 Investigations of Protein Aggregation Using Sequence and Structure Based Features

Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan

Abstract:

The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.

Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
133 Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route

Authors: A. Morelos-Gómez, S. M. Vega-Díaz, V. J. González, F. Tristán-López, R. Cruz-Silva , K. Fujisawa, H. Muramatsu , T. Hayashi , Xi Mi , Yunfeng Shi , H. Sakamoto , F. Khoerunnisa , K. Kaneko , B. G. Sumpter , Y.A. Kim , V. Meunier, M. Endo , E. Muñoz-Sandoval, M. Terrones

Abstract:

A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.

Keywords: Carbon nanoribbons, carbon nanotubes, unzipping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
132 Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality

Authors: Ilze Beitane, Evita Straumite

Abstract:

The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage.

The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties – aroma, taste, consistency and appearance – of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage.

Keywords: Barley flakes, malt extract, yoghurt, sensory analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
131 An Evaluation of Pesticide Stress Induced Proteins in three Cyanobacterial Species-Anabaena Fertilissima, Aulosira Fertilissima and Westiellopsis Prolifica using SDS-PAGE

Authors: Nirmal Kumar, Rita N. Kumar, Anubhuti Bora, Manmeet Kaur Amb

Abstract:

The whole-cell protein-profiling technique was evaluated for studying differences in banding pattern of three different species of Cyanobacteria i.e. Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica under the influence of four different pesticides-2,4-D (Ethyl Ester of 2,4-Dichloro Phenoxy Acetic Acid), Pencycuron (N-[(4-chlorophenyl)methyl]-Ncyclopentyl- N'–phenylurea), Endosulfan (6,7,8,9,10,10hexachloro- 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3- oxide) and Tebuconazole (1-(4-Chlorophenyl)-4,4-dimethyl-3-(1,2,4- triazol-1-ylmethyl)pentan-3-ol). Whole-cell extracts were obtained by sonication treatment (Sonifier cell disruptor -Branson Digital Sonifier S-450D, USA) and were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE analyses of the total protein profile of Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica showed a linear decrease in the protein content with increasing pesticide stress when administered to different concentrations of 2, 4-D, Pencycuron, Endosulfan and Tebuconazole. The results indicate that different stressors exert specific effects on cyanobacterial protein synthesis.

Keywords: Cyanobacteria, pesticide, SDS-PAGE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
130 Identification of Single Nucleotide Polymorphism in 5'-UTR of CYP11B1 Gene in Pakistani Sahiwal Cattle

Authors: S. Manzoor, A. Nadeem, M. Javed, ME. Babar

Abstract:

A major goal in animal genetics is to understand the role of common genetic variants in diseases susceptibility and production traits. Sahiwal cattle can be considered as a global animal genetic resource due to its relatively high milk producing ability, resistance against tropical diseases and heat tolerant. CYP11B1 gene provides instructions for making a mitochondrial enzyme called steroid 11-beta-hydroxylase. It catalyzes the 11deoxy-cortisol to cortisol and 11deoxycorticosterone to corticosterone in cattle. The bovine CYP11B1 gene is positioned on BTA14q12 comprises of eight introns and nine exons and protein is associated with mitochondrial epithelium. The present study was aimed to identify the single-nucleotide polymorphisms in CYP11B1 gene in Sahiwal cattle breed of Pakistan. Four polymorphic sites were identified in exon one of CYP11B1 gene through sequencing approach. Significant finding was the incidence of the C→T polymorphism in 5'-UTR, causing amino acid substitution from alanine to valine (A30V) in Sahiwal cattle breed. That Ala/Val polymorphism may serve as a powerful genetic tool for the development of DNA markers that can be used for the particular traits for different local cattle breeds.

Keywords: CYP11B1, single nucleotide polymorphism, sahiwal cattle, Pakistan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
129 Sequence Relationships Similarity of Swine Influenza a (H1N1) Virus

Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin

Abstract:

In April 2009, a new variant of Influenza A virus subtype H1N1 emerged in Mexico and spread all over the world. The influenza has three subtypes in human (H1N1, H1N2 and H3N2) Types B and C influenza tend to be associated with local or regional epidemics. Preliminary genetic characterization of the influenza viruses has identified them as swine influenza A (H1N1) viruses. Nucleotide sequence analysis of the Haemagglutinin (HA) and Neuraminidase (NA) are similar to each other and the majority of their genes of swine influenza viruses, two genes coding for the neuraminidase (NA) and matrix (M) proteins are similar to corresponding genes of swine influenza. Sequence similarity between the 2009 A (H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Nucleic acid sequence Maximum Likelihood (MCL) and DNA Empirical base frequencies, Phylogenetic relationship amongst the HA genes of H1N1 virus isolated in Genbank having high nucleotide sequence homology. In this paper we used 16 HA nucleotide sequences from NCBI for computing sequence relationships similarity of swine influenza A virus using the following method MCL the result is 28%, 36.64% for Optimal tree with the sum of branch length, 35.62% for Interior branch phylogeny Neighber – Join Tree, 1.85% for the overall transition/transversion, and 8.28% for Overall mean distance.

Keywords: Sequence DNA, Relationship of swine, Swineinfluenza, Sequence Similarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
128 Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum

Authors: A. Magesh, B. Preetha, T. Viruthagiri

Abstract:

Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.

Keywords: Fusarium oxysporum, Lignocellulosic biomass, Product formation kinetics, Statistical experimental design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
127 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo

Abstract:

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
126 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

Authors: M. A. Sedghamiz, S. Raeissi

Abstract:

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Keywords: Bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
125 Green Building Materials: Hemp Oil Based Biocomposites

Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan

Abstract:

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418
124 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
123 Impact of Welding Wire Nickel Plating Process Parameters on Ni Layer Thickness

Authors: Sylwia Wiewiorowska, Zbigniew Muskalski

Abstract:

The article presents part of research on the development of nickel plated welding wire production technology, whose application will enable the elimination of the flaws of currently manufactured welding wires. The nickel plated welding wire will be distinguished by high quality, because the Ni layer which is deposited electrochemically onto it from acid baths is characterized by very good adhesion to the steel wire surface, while the ductile nickel well deforms plastically in the drawing process and the adhesion of the Ni layer increases in the drawing process due to the occurring process of diffusion between the Ni and the steel. The Ni layer obtained in the proposed technology, despite a smaller thickness than when the wire is coated with copper, is continuous and tight, thus ensuring high corrosion resistance, as well as unsusceptible to scaling, which should provide a product that meets requirements imposed by the market. The product will also reduce, to some extent, the amount of copper brought in to steel through recycling, while the wire coating nickel introduced to the weld in the welding process is expected, to a degree, to favorably influence its mechanical properties. The paper describes the tests of the process of nickel plating of f1.96 mm-diameter wires using various nickel plating baths with different process parameters.

Keywords: Steel wire, plating baths, welding process, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
122 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.

The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: Halloysite, Palygorskite, Photocatalysis, Titanium Dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
121 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
120 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.

Keywords: Availability, crude oil contamination, EDTA, maize, metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
119 Concentration of Micro Minerals in Fiber Fraction of Forages

Authors: Lili Warly, Evitayani, A. Fariani

Abstract:

This study was carried out to evaluate concentration of micro minerals (Zn, Fe, Mn, Cu and Se) of forages and their distribution in fiber fraction (neutral detergent fiber/NDF and acid detergent fiber/ADF) in South Sumatra during dry and rainy seasons. Seven species of commonly forages namely Axonopus compressus, Panicum maximum, Pennisetum purpuphoides, Leucaena leucocephala, Centrocema pubescens, Calopogonium mucunoides and Acacia mangium were collected at native pasture during rainy and dry seasons. The results showed that micro minerals concentration of forages and their distribution in fiber fraction varied among species and season. In general, concentration of micro minerals was slightly higher in rainy season compared to dry season either in grass or legumes forages. In grass, concentration of Fe and Mn were above the critical level, while 33.3 %, 100 % and 16.7 % of evaluated grass were deficient in Zn, Cu and Se. Data on legume forages show that 75 % of legumes were deficient in Zn and Mn, 62.5 % deficient in Cu and 50 % deficient in Se. There was no species of legume deficient in Fe. Distribution of micro minerals in NDF and ADF were also significantly affected by species and season and depends on the kinds of element measured. Generally, micro minerals were associated in fiber fractions much higher during dry season compared to rainy season. Iron (Fe) and selenium (Se) in forages were the highest elements associated in NDF and ADF, while the lowest was found in Copper (Cu).

Keywords: Seasons, forages, micro mineral distribution, fiberfraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
118 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: Ferric sludge reuse, ferric iron reductant, water treatment, organic pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
117 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins

Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.

Keywords: Light olefins, OX-ZEO, syngas, ZnCrOx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
116 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: Dehpour A. A., Eslami B., Rezaie S., Hashemian S. F., Shafie F., Kiaie M.

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method and anticancer activity measured by MTT assay. The major components in essential oil were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 μg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. The ethanol extract of Corohilla varia inhibited on MCF7 cell lines. IC50 0.6(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, Essential oil, Antibacterial, Anticancer, HeLa cell line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
115 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.

Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
114 Fabrication of Carbon Doped TiO2 Nanotubes via In-situ Anodization of Ti-foil in Acidic Medium

Authors: Asma M. Milad, Mohammad B. Kassim, Wan R. Daud

Abstract:

Highly ordered TiO2 nanotube (TNT) arrays were fabricated onto a pre-treated titanium foil by anodic oxidation with a voltage of 20V in phosphoric acid/sodium fluoride electrolyte. A pretreatment of titanium foil involved washing with acetone, isopropanol, ethanol and deionized water. Carbon doped TiO2 nanotubes (C-TNT) was fabricated 'in-situ' with the same method in the presence of polyvinyl alcohol and urea as carbon sources. The affects of polyvinyl alcohol concentration and oxidation time on the composition, morphology and structure of the C-TN were studied by FE-SEM, EDX and XRD techniques. FESEM images of the nanotubes showed uniform arrays of C-TNTs. The density and microstructures of the nanotubes were greatly affected by the content of PVA. The introduction of the polyvinyl alcohol into the electrolyte increases the amount of C content inside TiO2 nanotube arrays uniformly. The influence of carbon content on the photo-current of C-TNT was investigated and the I-V profiles of the nanotubes were established. The preliminary results indicated that the 'in-situ' doping technique produced a superior quality nanotubes compared to post doping techniques.

Keywords: Anodization, photoelectrochemical cell, 'in-situ', post doping, thin film, and titania nanotube arrays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
113 The Extraction and Stripping of Hg (II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg (II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a countercurrent flow. Samples were kept in the outlet of feed and stripping solution at 1 hour and characterized concentration of Hg (II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg (II) were 98% and 44.2%, respectively.

Keywords: Hg (II), hollow fiber contactor, produced water, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
112 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms

Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N., Venkatesh

Abstract:

The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2, Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated, powder forms, and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. However, over SO4^2-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.

Keywords: Cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
111 Analysis of Dust Particles in Snow Cover in the Surroundings of the City of Ostrava: Particle Size Distribution, Zeta Potential and Heavy Metal Content

Authors: Roman Marsalek

Abstract:

In this paper, snow samples containing dust particles from several sampling points around the city of Ostrava were analyzed. The pH values of sampled snow were measured and solid particles analyzed. Particle size, zeta potential and content of selected heavy metals were determined in solid particles. The pH values of most samples lay in the slightly acid region. Mean values of particle size ranged from 290.5 to 620.5 nm. Zeta potential values varied between -5 and -26.5 mV. The following heavy metal concentration ranges were found: copper 0.08-0.75 mg/g, lead 0.05-0.9 mg/g, manganese 0.45-5.9 mg/g and iron 25.7-280.46 mg/g. The highest values of copper and lead were found in the vicinity of busy crossroads, and on the contrary, the highest levels of manganese and iron were detected close to a large steelworks. The proportion between pH values, zeta potentials, particle sizes and heavy metal contents was established. Zeta potential decreased with rising pH values and, simultaneously, heavy metal content in solid particles increased. At the same time, higher metal content corresponded to lower particle size.

Keywords: Dust, snow, zeta potential, particles size distribution, heavy metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
110 Sensory, Microbiological and Chemical Assessment of Cod (Gadus morhua) Fillets during Chilled Storage as Influenced by Bleeding Methods

Authors: Minh Van Nguyen, Magnea Gudrun Karlsdottir, Adalheidur Olafsdottir, Arnljotur Bjarki Bergsson, Sigurjon Arason

Abstract:

The effects of seawater and slurry ice bleeding methods on the sensory, microbiological and chemical quality changes of cod fillets during chilled storage were examined in this study. The results from sensory evaluation showed that slurry ice bleeding method prolonged the shelf life of cod fillets up to 13-14 days compared to 10-11 days for fish bled in seawater. Slurry ice bleeding method also led to a slower microbial growth and biochemical developments, resulting lower total plate count (TPC), H2S-producing bacteria count, total volatile basic nitrogen (TVB-N), trimethylamine (TMA), free fatty acid (FFA) content and higher phospholipid content (PL) compared to those of samples bled in seawater. The results of principle component analysis revealed that TPC, H2S-producing bacteria, TVB-N, TMA and FFA were in significant correlation. They were also in negative correlation with sensory evaluation (Torry score), PL and water holding capacity (WHC).

Keywords: Bleeding method, chilled storage, microbial growth, sensory evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
109 Validation and Application of a New Optimized RP-HPLC-Fluorescent Detection Method for Norfloxacin

Authors: Mahmood Ahmad, Ghulam Murtaza, Sonia Khiljee, Muhammad Asadullah Madni

Abstract:

A new reverse phase-high performance liquid chromatography (RP-HPLC) method with fluorescent detector (FLD) was developed and optimized for Norfloxacin determination in human plasma. Mobile phase specifications, extraction method and excitation and emission wavelengths were varied for optimization. HPLC system contained a reverse phase C18 (5 μm, 4.6 mm×150 mm) column with FLD operated at excitation 330 nm and emission 440 nm. The optimized mobile phase consisted of 14% acetonitrile in buffer solution. The aqueous phase was prepared by mixing 2g of citric acid, 2g sodium acetate and 1 ml of triethylamine in 1 L of Milli-Q water was run at a flow rate of 1.2 mL/min. The standard curve was linear for the range tested (0.156–20 μg/mL) and the coefficient of determination was 0.9978. Aceclofenac sodium was used as internal standard. A detection limit of 0.078 μg/mL was achieved. Run time was set at 10 minutes because retention time of norfloxacin was 0.99 min. which shows the rapidness of this method of analysis. The present assay showed good accuracy, precision and sensitivity for Norfloxacin determination in human plasma with a new internal standard and can be applied pharmacokinetic evaluation of Norfloxacin tablets after oral administration in human.

Keywords: Norfloxacin, Aceclofenac sodium, Methodoptimization, RP-HPLC method, Fluorescent detection, Calibrationcurve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069