%0 Journal Article
	%A Patsaraporn Somboonsak and  Mud-Armeen Munlin
	%D 2011
	%J International Journal of Medical and Health Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 51, 2011
	%T Sequence Relationships Similarity of Swine Influenza a (H1N1) Virus
	%U https://publications.waset.org/pdf/2099
	%V 51
	%X In April 2009, a new variant of Influenza A virus
subtype H1N1 emerged in Mexico and spread all over the world. The
influenza has three subtypes in human (H1N1, H1N2 and H3N2)
Types B and C influenza tend to be associated with local or regional
epidemics. Preliminary genetic characterization of the influenza
viruses has identified them as swine influenza A (H1N1) viruses.
Nucleotide sequence analysis of the Haemagglutinin (HA) and
Neuraminidase (NA) are similar to each other and the majority of
their genes of swine influenza viruses, two genes coding for the
neuraminidase (NA) and matrix (M) proteins are similar to
corresponding genes of swine influenza. Sequence similarity between
the 2009 A (H1N1) virus and its nearest relatives indicates that its
gene segments have been circulating undetected for an extended
period. Nucleic acid sequence Maximum Likelihood (MCL) and
DNA Empirical base frequencies, Phylogenetic relationship amongst
the HA genes of H1N1 virus isolated in Genbank having high
nucleotide sequence homology.
In this paper we used 16 HA nucleotide sequences from NCBI for
computing sequence relationships similarity of swine influenza A
virus using the following method MCL the result is 28%, 36.64% for
Optimal tree with the sum of branch length, 35.62% for Interior
branch phylogeny Neighber – Join Tree, 1.85% for the overall
transition/transversion, and 8.28% for Overall mean distance.
	%P 99 - 103