An Evaluation of Pesticide Stress Induced Proteins in three Cyanobacterial Species-Anabaena Fertilissima, Aulosira Fertilissima and Westiellopsis Prolifica using SDS-PAGE
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
An Evaluation of Pesticide Stress Induced Proteins in three Cyanobacterial Species-Anabaena Fertilissima, Aulosira Fertilissima and Westiellopsis Prolifica using SDS-PAGE

Authors: Nirmal Kumar, Rita N. Kumar, Anubhuti Bora, Manmeet Kaur Amb

Abstract:

The whole-cell protein-profiling technique was evaluated for studying differences in banding pattern of three different species of Cyanobacteria i.e. Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica under the influence of four different pesticides-2,4-D (Ethyl Ester of 2,4-Dichloro Phenoxy Acetic Acid), Pencycuron (N-[(4-chlorophenyl)methyl]-Ncyclopentyl- N'–phenylurea), Endosulfan (6,7,8,9,10,10hexachloro- 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3- oxide) and Tebuconazole (1-(4-Chlorophenyl)-4,4-dimethyl-3-(1,2,4- triazol-1-ylmethyl)pentan-3-ol). Whole-cell extracts were obtained by sonication treatment (Sonifier cell disruptor -Branson Digital Sonifier S-450D, USA) and were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE analyses of the total protein profile of Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica showed a linear decrease in the protein content with increasing pesticide stress when administered to different concentrations of 2, 4-D, Pencycuron, Endosulfan and Tebuconazole. The results indicate that different stressors exert specific effects on cyanobacterial protein synthesis.

Keywords: Cyanobacteria, pesticide, SDS-PAGE

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078841

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464

References:


[1] O. A. Herrero, A. M. Muro-Pastor and E. Flores, "Nitrogen Controlling Cyanobacteria," J. Bacteriol., vol. 183, pp. 411-425, 2001.
[2] U. Mishra and S. Pabby, "Cyanobacteria: A Potential Biofertilizer for Rice," Res., 6-10, 2004.
[3] F. B. Pankratz, C. Doebel, A. Farenhorst and L. G. Goldsborough, "Interactions between Algae (Selenastrum Capricornutum) and Pesticides: Implications for Managing Constructed Wetlands for Pesticides Removal," J. Env. Sci. Health: B., vol. 38, pp. 147-155, 2003.
[4] T. Krech, J. De Chastonay and E. Falsen, "Epidemiology of diptheria: polypeptide and restriction enzyme analysis in comparison with conventional phage typing," Eur. J. Cli. Microbiol. Infect. Dis., vol. 7, pp. 232-237, 1988.
[5] M. T. Giardi, J. Masojidek and D. Godde, "Effects of Abiotic Stresses on the Turnover of the D1reaction Center II Protein," Plant Physiol., vol. 101, pp. 635-642, 1997.
[6] L. Stal, "Cyanobacteria: Diversity and versatility. Clues to life in Extreme Environments," in Algae and cyanobacteria in extreme environments, 2007, pp. 659-680.
[7] J. Rath and S. P. Adhikary, "Response of the Estuarine Cyanobacterium Lyngbya Aestuarii to UV-B Radiation," J. App. Phycol., vol. 19, pp. 529-536, 2007.
[8] J. I. Nirmal Kumar, B. Anubhuti and A. Manmeet Kaur, "Chronic Toxicity of a Triazole Fungicide-Tebuconazole on the Growth and Metabolic Activities of Heterocystous, Nitrogen-Fixing Paddy Field Cyanobacterium, Westiellopsis prolifica, Janet," J. Microbiol. Biotech., vol. 20(7), pp. 1134-1139, 2010.
[9] P. Bhargava, M. Yogesh, S. Ashish Kumar, A. Anjum and R. Lal Chand, "Preliminary Analysis of Cuprome of Anabaena Doliolum using Two- Dimensional Gel Electrophoresis," Curr. Sci., vol. 91, pp. 1521-152, 2006.
[10] R. P. Sinha, N. Singh, A. Kumar, H. D. Kumar, M. Häder and D. P. Häder, "Effects of UV Irradiation on Certain Physiological and Biochemical Processes in Cyanobacteria," J. Photochem. Photobiol. B: Biology, vol. 32, pp. 107-113, 1996.
[11] S. Zutshi, Jamia Millia Islamia University, New Delhi, India., Heavy metal stress induced enzymes in cyanobacteria, Ph.D thesis, 2009.
[12] J. I. Nirmal Kumar, A. Manmeet Kaur and B. Anubhuti, "Differential Effect of Phenoxy Substituted Herbicide 2, 4-D on Pigments, Metabolites and Enzyme Activities of three Species of Cyanobacteria," Int. J. Biosci. Technol., vol. 2, pp. 87-95, 2009.
[13] R. Rippka, S. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier, "Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria," J. Gen. Microbiol., vol. 111, pp. 1-61, 1979.
[14] F. Gentilli, M. C. Nilsson, O. Zackrisson, T. H. DeLuca and A. Sellstedt, "Physiological and Molecular Diversity of Feather Moss Associative N2-Fixing Cyanobacteria," J. Exp. Bot., vol. 56, pp. 3121-3127, 2005.
[15] U. K. Laemmli, "Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4," Nature, vol. 227, pp. 680-685, 1970.
[16] A. Weber and K. Jung, "Profiling Early Osmostress-Dependent Gene Expression in Escherichia Coli Using DNA Macroarrays," J. Bacteriol., vol. 184, pp. 5502-5507, 2002.
[17] U. M. Rajendran, K. Elango and N. Anand, "Effects of a Fungicide, an Insecticide and a Biopesticide on Tolypothrix scytonemoides," Pest. Biochem. Physiol., vol. 87, pp. 164-171, 2007.
[18] K. Freemark, "The Use of Plants for Environmental Monitoring and Assessment," Ecotoxicol. Env. Saf., vol. 30, pp. 289 - 301, 1995.
[19] S. K. Saha, L. Uma and S. Gopalakrishnan, "Nitrogen Stress Induced Changes in the Marine Cyanobacterium Oscillatoria willei BDU 130511," FEMS Microbiol. Eco., vol. 45, pp. 263-272, 2003.
[20] E. A. Fern├índez-Valiente, U. A. Quesada, F. Leganés and R. Careres, Contribution of N Fixing Cyanobacteria to Rice Production: Availability of Nitrogen from N-Labelled Cyanobacteria and Ammonium Sulphate to Rice. Plant Soil, vol. 211, pp. 107-112, 2000.