
 

 

  
Abstract—Calibration estimation is a method of adjusting the 

original design weights to improve the survey estimates by using 
auxiliary information such as the known population total (or mean) 
of the auxiliary variables. A calibration estimator uses calibrated 
weights that are determined to minimize a given distance measure to 
the original design weights while satisfying a set of constraints 
related to the auxiliary information. In this paper, we propose a new 
multivariate calibration estimator for the population mean in the 
stratified sampling design, which incorporates information available 
for more than one auxiliary variable. The problem of determining the 
optimum calibrated weights is formulated as a Mathematical 
Programming Problem (MPP) that is solved using the Lagrange 
multiplier technique. 
 

Keywords—Calibration estimation, Stratified sampling, 
Multivariate auxiliary information, Mathematical programming 
problem, Lagrange multiplier technique. 

I. INTRODUCTION 
ALIBRATION is commonly used in survey sampling to 
increase the precision of the estimators of population 

parameter when auxiliary information is available. The 
method works by modifying the original design weights 
incorporating the known population characteristics, in practice 
population totals or population means, of the auxiliary 
variables. Deville and Särndal (1992) first used the calibration 
estimators in survey sampling [3]. Wu and Sitter (2001) 
suggested the model-calibration estimator that uses an explicit 
working model for ( )i iE y x  [8]. Instead of using an explicit 

parametric model, Briedt and Opsomer (2000) adopted a local 
polynomial regression model to derive a non-parametric 
regression estimator [1]. Singh, Horn and Yu (1998), and 
Kim, Sungur and Heo (2007) introduced the calibration 
estimation in stratified sampling. They suggested the 
calibration estimators, respectively, for combined generalized 
regression estimator and combined ratio estimator using a 
single auxiliary information [4], [7]. Chen and Qin (1993) 
suggested a calibrated estimator that makes an efficient use of 
auxiliary variables for equal probability sampling by 
maximizing the constrained empirical likelihood [2]. Kim 
(2009) extended this technique to unequal probability 
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sampling and also implemented the result in stratified 
sampling [5].  

In surveys, when more than one auxiliary information is 
available, the precision of the estimate can further be 
increased by adjusting the design weights based on all the 
auxiliary information. In this paper, we propose a multivariate 
calibration estimator for the population mean with the aid of 
several auxiliary information in stratified random sampling for 
improving the precision of the estimate. The problem of 
determining the optimum calibrated weights is formulated as a 
Mathematical Programming Problem (MPP) that minimizes 
the chi-square type distance subject to the p  calibration 
constraints and the non-negativity restrictions on the 
calibrated weights, where p  is the number of available 
auxiliary variables. Ignoring the non-negativity restrictions a 
solution procedure is developed to solve the MPP using 
Lagrange multiplier technique. The closed form expression for 
the solution of the calibrated weight is derived in the presence 
of two auxiliary variables for a stratified random sampling 
design. The MPP is solved completely if the non-negativity 
restrictions on calibrated weights are satisfied. If the 
restrictions are violated, another solution procedure is 
developed by extending the procedure proposed by Singh 
(2003) that minimizes a distance function subject to the p  
calibration constraints, which guarantees the non-negativity of 
the weights [6]. Two numerical examples are presented to 
illustrate the application and computational details of the 
proposed techniques to determine the multivariate calibrated 
estimator. The examples reveal that the proposed multivariate 
calibrated estimator is more efficient than the usual estimator 
of the population mean in stratified sampling. 

II.  FORMULATION OF THE PROBLEM AS AN MPP 
 Let the population be divided into L  non-overlapping 
strata and hn  be the number of units drawn by simple random 
sampling without replacement (SRSWOR) from the h th 
stratum consisting of hN  units, and 

1

L
hh

n n
=

= ∑  and 

1

L
hh

N N
=

= ∑  give the total sample size and the population 

size. For the h th strata, let h hW N N=  be the strata weights 
and ,h hy Y  are the sample and population means, respectively, 
for the study variable.  
 Let the estimation of unknown population means Y  be of 
interest using the information from p  auxiliary variables jX , 

1, 2, ...,j p= . Let hiy  and hijx  denote the values of the i th 
population (sampled) unit of the study variable ( Y ) and the 
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j th auxiliary variable ( jX ) respectively, in the h th stratum. 

Assume that the strata means 
1

L
j h hjh

X W X
=

= ∑  are 
accurately known. The purpose is to estimate the population 
mean 

1

L
h hh

Y W Y
=

= ∑  by using the auxiliary information jX . 

The usual estimator of population mean Y  is given by  
 

                         
1

 
L

st h h
h

y W y
=

= ∑ .                                 (1) 

 
In the presence of more than one auxiliary information, we 

suggest a multivariate calibrated estimator of the population 
mean Y  under stratified sampling given by 

 

                       * *

1
 

L

st h h
h

y W y
=

= ∑                                   (2) 

 
with new weights *

hW . When more than one auxiliary 
variables jX , 1, 2, ...,j p=  is available, the new weights *

hW  
are so chosen such that the sum of the chi-square type 
distances given by 
 

                  
( )2*

1 1

p L h h

j h h hj

W W

W q= =

−
∑∑                                 (3) 

 
is minimum, subject to the calibration constraints 
 

          *

1

L

h hj j
h

W x X
=

=∑ ;  1, 2, ..., .j p=                       (4) 

 
Note that 0hjq >  in (3) are suitability chosen weights 

which determine the form of estimator.  One of the challenges 
in calibration approach of estimation is that sometimes the 
calibrated weights do not satisfy the desired constraint of 
weights being non-negative. To avoid such situation one 
needs to impose the restrictions 

 
                         * 0hW ≥ ; 1, 2, ..., .h L=                            (5) 

 
Thus, the problem of determining the optimum calibrated 

weights *
hW  may be formulated as a Mathematical 

Programming Problem (MPP) as given below: 
 

Minimize 
( )2*

1

L h h

h h h

W W
Z

W Q=

−
= ∑  

subject to *
1 1

1

L

h h
h

W x X
=

=∑ ,   

*
2 2

1
,

L

h h
h

W x X
=

=∑  

       

*

1
,

L

h hp p
h

W x X
=

=∑    

and   * 0hW ≥ ; 1, 2, ...,h L=                                                     (6) 

where 
1

p

h hj
j

Q q
=

= ∑ . 

III. DETERMINING OPTIMAL CALIBRATED WEIGHTS: THE 
SOLUTION PROCEDURE 

Ignoring the restrictions in (5), we can use Lagrange 
multipliers technique to solve the MPP (6) for determining the 
optimum values of *

hW , since the constraints are equality 
constraints. If the values *

hW  satisfy the ignored restrictions, 
the MPP in (6) is solved completely. 

To solve (6), we associate a multiplier 2 jλ−  with the j th 
constraint in (6), Then, the Lagrangian function L  is formed 
as: 

   
( ) ( )2*

*

1

*

1 1

,

2 .

L h h
h j

h h h

p L

j h hj j
j h

W W
L W

W Q

W x X

λ

λ

=

= =

−
=

⎛ ⎞− −⎜ ⎟
⎝ ⎠

∑

∑ ∑
               (7) 

 
The necessary conditions for the solution of the problem are 
 

              *
0.

jh

L L
W λ
∂ ∂

= =
∂

                          (8) 

 
The determination of the optimum calibrated weights *

hW  
using the Lagrange multiplier technique discussed above is 
illustrated in Theorem 1 when information on two auxiliary 
variables ; ( 1, 2)jX j =  is available. 

Theorem 1: In stratified sampling, when 2p = , the 
optimum solution to the MPP (6), that is, the optimum 
calibrated weights *

hW  that minimize (3) subject to the 
conditions (4) is given by 

 
   ( )*

1 1 2 2h h h h h hW W W Q x xλ λ= + +                      (9) 
 
where,  

( ) ( )

( ) ( )

1 1 2 2

1 2

1 1 2 2

2 2

ˆ ˆ
,

ˆ ˆ
,

C X X B X X

B AC

B X X A X X

B AC

λ

λ

− − + −
=

−

− − −
=

−

                  (10) 

 

1 1 2 2
1 1

ˆ ˆ, ,
L L

h h h h
h h

X W x X W x
= =

= =∑ ∑                      (11)      
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2
1

1

1 2
1

2
2

1

,

and

.

L

h h h
h
L

h h h h
h

L

h h h
h

A W Q x

B W Q x x

C W Q x

=

=

=

=

=

=

∑

∑

∑

                         (12)  

                                                       
Proof of Theorem 1: Using Lagrange multiplier technique, 

the function to be minimized 
 

( )2*
*

1 1 1
1 1

*
2 2 2

1

2

2 .

L Lh h
h h

h hh h

L

h h
h

W W
L W x X

W Q

W x X

λ

λ

= =

=

− ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞− −⎜ ⎟
⎝ ⎠

∑ ∑

∑
 

 
The necessary conditions given in (8) are 
 

                    
( )*

*

1 1 2 2

2

2 2 0,

h h

h hh

h h

W WL
W QW
x xλ λ

−∂
=

∂

− =

                        (13) 

 

                      *
1 1

11

2 0
L

h h
h

L W x X
λ =

∂ ⎛ ⎞= − − =⎜ ⎟∂ ⎝ ⎠
∑                       (14) 

and 

                     *
2 2

12

2 0.
L

h h
h

L W x X
λ =

∂ ⎛ ⎞= − − =⎜ ⎟∂ ⎝ ⎠
∑                   (15) 

 
Solving the necessary conditions (13) to (15) completes the 

proof.  
Therefore, we obtain the new multivariate calibrated 

estimator of the population mean 
 

* *

1
 

L

st h h
h

y W y
=

= ∑  

 
 stated in (2), where the optimum calibrated weights *

hW is 
defined in (9). 

If the calibrated weights in (9) violate the restrictions (5), 
we develop the following technique that minimizes a distance 
function given in Singh (2003) subject to constraints given in 
(4) [6].  

The following theorem discusses a distance function which 
guarantees the non-negativity of the calibrated weights when 
information on two auxiliary variables ; ( 1, 2)jX j =  is 
available. 

Theorem 2: The optimum calibrated weights obtained by 
minimizing the distance function 

 

 * *
*

1 1

1 1ln ln
L L

h h
h hh h

Z W W
W W= =

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑                 (16) 

 

subject to the calibration constraints (4) for 2,p =  leads to 
non-negative weights. 

Proof of Theorem 2: In this situation, the Lagrange function 
to be minimized is as follows: 

 
*

*

1

* *
1 1 1 2 2 2

1 1

ln

.

L
h

h
h h

L L

h h h h
h h

W
L W

W

W x X W x Xλ λ

=

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑
 

 
The necessary conditions given in (8) are 
 

                      
( ) ( )*

*

1 1 2 2

1 ln ln

0,

h h
h

h h

L W W
W

x xλ λ

∂
= + −

∂
− − =

                       (17) 

 

                     *
1 1

11

0
L

h h
h

L W x X
λ =

∂ ⎛ ⎞
= − − =⎜ ⎟∂ ⎝ ⎠

∑                      (18) 

and 

                    *
2 2

12

0.
L

h h
h

L W x X
λ =

∂ ⎛ ⎞= − − =⎜ ⎟∂ ⎝ ⎠
∑                     (19) 

 
From (17) we have 
 
              ( )*

1 1 2 2exp ln 1 .h h h hW W x xλ λ= + + −⎡ ⎤⎣ ⎦              (20) 
 

Using (20) and solving the equations (18) and (19), we 
obtain the values of 1λ  and 2 .λ   

Thus (20) shows that the calibrated weights are always non-
negative if the distance function (16) is minimized, satisfying 
the calibration constraint (4) Hence the theorem. 

IV. NUMERICAL ILLUSTRATIONS  
Example 1: In order to illustrate and demonstrate the 

determination of the proposed multivariate calibrated 
estimator, we use a tobacco population data of N = 106 
countries with three variables: area (in hectares), yield (in 
metric tons) and production (in metric tons). The data are 
obtained from the Agriculture Statistics 1999 reported in 
Singh (2003) [6]. The countries were divided into 10L =  
strata and a sample of 40n =  countries using proportional 
allocation was selected. Suppose that an estimate of average 
production ( Y ) of tobacco crop is of interest using the two 
auxiliary variables 1X  = area and 2X  = yield. Assume that 

1X  and 2X  in different countries are known. To compute the 
multivariate calibrated weights in stratified sampling and the 
value of the estimate of Y , we use the same sample units as 
obtained in Singh (2003) [6]. Assuming 2

1
1,h hjj

Q q
=

= =∑  

Table I shows the following sample information: 

1 1
1

ˆ 59811.28
L

h h
h

X W x
=

= =∑ , 
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2 2
1

ˆ 1.56942
L

h h
h

X W x
=

= =∑ ,  

2
1

1
14211940497.2

L

h h h
h

A W Q x
=

= =∑ , 

1 2
1

80340.21
L

h h h h
h

B W Q x x
=

= =∑  

and 2
2

1

2.63050
L

h h h
h

C W Q x
=

= =∑ . 

For this population the known population means for the 
auxiliary variables are: 

 
1 34438.61X =  and 2 1.5507X =  

 
Using (10), 6

1 2.10924 10λ −= − ×  and 2 0.0573.λ =   Thus, 
the multivariate calibrated weights *

hW  in stratified sampling 
proposed in (9) is reduced to 

 
( )* 6

1 22.10924 10 0.0573hh h h hW W W x x−= + − × +  

 
which are obtained and presented in Table II.  

The usual estimator of population mean Y  given in (1) 
under the proportional allocation is  

 

 
1

 94666.73.
L

st h h
h

y W y
=

= =∑                    (21) 

 
Whereas an estimate of the average production of tobacco 

using the proposed generalized multivariate estimator in (2) is  
 

           * *

1
 53952.56.

L

st h h
h

y W y
=

= =∑                      (22) 

 
The true average production of the tobacco crop for this 

population is 52444.56. Thus from  (21) and (22), it is evident 
that the proposed multivariate calibration estimator is more 
closed to true population mean as compared to usual 
estimator. 

Example 2: In this illustration we use an artificial 
population data with the auxiliary variables 1X  and 2X  and 
the main variable ,Y  where the data were divided into 4L =  
strata and a sample using proportional allocation was selected. 
Suppose that an estimate of Y  is of interest using the two 
auxiliary variables 1X  and 2X . Assume that 1X  and 2X   are 

known and 2

1
1.h hjj

Q q
=

= =∑  To compute the multivariate 

calibrated weights in stratified sampling and the value of the 
estimate of Y , the following sample information shown in 
Table III was used. 

1 1
1

ˆ 170020.6
L

h h
h

X W x
=

= =∑ ,  

2 2
1

ˆ 1.562
L

h h
h

X W x
=

= =∑ ,  

2
1

1
93926357687.4

L

h h h
h

A W Q x
=

= =∑ , 

1 2
1

326031.7
L

h h h h
h

B W Q x x
=

= =∑   

and 2
2

1
2.493

L

h h h
h

C W Q x
=

= =∑ . 

For this population the known population means for the 
auxiliary variables are 

 
1 37453.78X =  and  2 1.5671X = . 

 
Using (10), 6

1 2.59723 10λ −= − ×  and 2 0.34163.λ =   Thus, 
the multivariate calibrated weights *

hW  in stratified sampling 
proposed in (9) are *

1 0.02864,W = −  *
2 0.31792,W =  

*
3W = 0.47389 and *

4W = 0.31072.  These calibrated weights 
violate the restrictions (5) as one of the calibrated weights is 
negative. Thus we use the second technique developed in 
Section 3 to compute the non-negative calibrated weights.  

Using (20) and solving the equations (18) and (19), we 
obtain the constants to be 6

1 -8.76261 10λ −= ×  and 

2 =1.12097.λ  Thus, the proposed multivariate calibrated 
weights *

hW  given in (20) are *
1 0.00110,W =  

*
2 0.42924,W = *

3 0.48673,W = and *
4 0.12782.W =   

From this data the usual estimator of population mean Y  
under the proportional allocation using (1), is 94289.66. 
Whereas the estimate of population means Y  using the 
method of minimizing distance is 58249.34. The true 
population mean is 49299.73. Therefore it is evident that the 
proposed multivariate calibration estimator is more efficient 
than the usual estimator of population mean.  

V.  CONCLUSION 
In this paper, we propose the techniques of determining the 

multivariate calibrated estimator to improve the survey 
estimates when more than one auxiliary variable is available. 
The problem of determining optimum calibrated weights is 
formulated as an MPP, which is solved using Lagrange 
multiplier technique. 

Two numerical examples are presented to illustrate the 
computational details of the proposed techniques and the 
performance of the proposed estimator. The results reveal that 
the proposed estimator performs better than the usual 
estimator

APPENDIX 
TABLE I  

SAMPLE INFORMATION FOR TOBACCO POPULATION 
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APPENDIX 
TABLE I  

SAMPLE INFORMATION FOR TOBACCO POPULATION 

h  1hx  2hx  hy  hW  1h hW x  2h hW x  2
1h h hW Q x  2

2h h hW Q x  1 2h h h hW Q x x

1 1304.7 1.940 2592.0 0.05660 73.85 0.10981 96348.4 0.21303 143.27 
2 29075.0 1.377 26763.0 0.05660 1645.75 0.07792 47850318.4 0.10728 2265.66 
3 5191.7 2.793 14766.3 0.07547 391.82 0.21082 2034219.1 0.58888 1094.49 
4 21700.0 1.443 29900.0 0.09434 2047.17 0.13616 44423584.9 0.19653 2954.75 
5 6808.0 1.788 12462.5 0.11321 770.72 0.20236 5247041.2 0.36172 1377.66 
6 1800.0 1.785 3375.0 0.03774 67.92 0.06736 122264.2 0.12023 121.25 
7 24481.5 1.323 38411.8 0.28302 6928.74 0.37436 169626245.6 0.49517 9164.83 
8 294809.2 1.320 473455.2 0.16038 47280.72 0.21170 13938788309.1 0.27944 62410.54 
9 6303.7 1.327 7480.3 0.09434 594.69 0.12516 3748699.4 0.16604 788.95 

10 350.0 1.900 822.5 0.02830 9.91 0.05377 3467.0 0.10217 18.82 
Total 59811.28 1.56942 14211940497.2 2.63050 80340.21 

 
TABLE II 

OPTIMUM CALIBRATED WEIGHTS 
h  1 2 3 4 5 6 7 8 9 10 

*
hW  0.06274 0.05760 0.08673 0.09782 0.12318 0.04145 0.28986 0.07278 0.10026 0.03136 

 
TABLE III 

SAMPLE INFORMATION  
h  1hx  2hx  hy  hW  1h hW x  2h hW x  2

1h hW x  2
2h hW x  1 2h h hW x x  

1 719082.2 2.037 14707.1 0.16667 119847 0.339 86179873719.3 0.691 244088.5 
2 13190.3 1.640 19935.7 0.20833 2748 0.342 36246591.1 0.560 4506.7 
3 20992.1 1.394 33021.5 0.33333 6997.4 0.465 146889097.8 0.648 9753.2 
4 162587.8 1.427 262896.1 0.29167 47421.4 0.416 7710149597.8 0.594 67683.3

Total    1 170020.6 1.562 93926357687.4 2.493 326031.7 
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