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Abstract—In this paper, mesh-free element free Galerkin (EFG)
method is extended to solve two-dimensional potential flow
problems. Two ideal fluid flow problems (i.e. flow over a rigid
cylinder and flow over a sphere) have been formulated using
variational approach. Penalty and Lagrange multiplier techniques
have been utilized for the enforcement of essential boundary
conditions. Four point Gauss quadrature have been used for the
integration on two-dimensional domain () and nodal integration
scheme has been used to enforce the essential boundary conditions
on the edges (I'). The results obtained by EFG method are
compared with those obtained by finite element method. The effects
of scaling and penalty parameters on EFG results have also been
discussed in detail.

Keywords—Meshless, EFG method; potential flow, Lagrange
multiplier method; penalty method; penalty parameter and scaling
parameter.

I. INTRODUCTION

OW a day, a number of numerical tools are available to

solve fluid flow problems including finite difference
method (FDM), finite volume method (FVM) and finite
element method (FEM). But the numerical simulation of fluid
flow problems in complex geometries still remains a
challenging task for the researchers and scientists. Even with
availability of powerful mesh generators, the time required in
mesh generation process for complex geometries is quite large
in comparison to the solution and often leads to numerical
errors. Therefore, to overcome these problems, a number of
numerical methods were proposed in past few years. In these
methods, the requirement of meshes is totally unnecessary.
The essential feature of these methods is that they only require
a set of nodes to construct the approximation function. These
methods are named as mesh-free or meshless methods. For
more than ten years, the meshless methods were successfully
applied in different areas of engineering and science including
fluid flow problems. Lin and Atluri [1], [2] used meshless
local Petrov Galerkin method (MLPG) to solve Navier-
Strokes equation for incompressible fluids and convection-
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diffusion equation for flow problems. Mesh-free finite point
method is utilized to solve advective—diffusive transport and
fluid mechanics problem by Onate and his co-workers [3], [4].
The further use of finite point method has been done by
Lohner et al. [5] to solve compressible flow problem. Sophy
and Sadat [6] have solved three dimensional laminar natural
convection problems by diffuse approximation method. Liu et
al. [7] used reproducing kernel particle method to solve fluid
dynamics problem in which they introduced the multiple scale
adaptive refinement technique. A radial basis function based
meshless method has been used by Han and Huang [8] to
model the shear flow of Johnson-Segalman fluid. Tsukanov et
al. [9] wused R-function method for the solution of
incompressible fluid dynamics problems. Some of these
meshless methods have also been extended to solve potential
flow problems. Chen and Raju [10] used coupled finite
element and MLPG method to solve two-dimensional
potential flow problems. Novel finite point method has been
used by Cheng and Liu [11] to analyze the flow around a
cylinder.

In recent years, the meshless element free Galerkin (EFG)
method has been extensively used to solve a variety of
problems in different areas of engineering and science
including fluid flow. Singh [12] used the EFG method to solve
viscous incompressible fluid flow problems. Du [13] used this
method for the simulation of stationary two-dimensional
shallow flows in rivers, and Verardi et al. [14] applied this
method  for  the study of fully developed
magnetohydrodynamic duct flows.

In the present work, the EFG method has been extended to
solve two-dimensional potential flow problems. Two ideal
fluid flow problems i.e. flow over a rigid cylinder kept
between two parallel plates and flow over a sphere kept inside
a cylinder have been chosen and solved using penalty as well
as Lagrange multiplier techniques. Nodal integration approach
has been utilized to enforce the essential boundary conditions
along the edges of the 2-D computational domain and
Gaussian quadrature approach has been used to integrate over
computational domain. The EFG results have been obtained
for two model fluid flow problems, and are compared with
those obtained by finite element method. The effect of scaling
as well as penalty parameter has also been discussed in detail.
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II. OVERVIEW OF EFG METHOD

A. MLS Approximation

The of the governing equations by element free Galerkin
(EFG) method requires moving least square (MLS)
interpolation functions which are made up of three
components: a weight function associated with each node, a
basis function and a set of non-constant coefficients. The
weight function is non-zero over a small neighborhood at a
particular node, called support of the node. Using MLS
approximation, the unknown stream function W(x, y) is
approximated by W"(x, y) over the two-dimensional domain

[15].
Yo ) =¥ = Sps (e o) =p (0 (1)
=

Where, m = number of terms in the basis,

pi(x,y)=

monomial basis function, a;(x,y) =non-constant coefficients:

T—[x ], pPT(x)=[1 x y]. The coefficients a;(x) are

determined by minimizing the functional J(x) given by

2
J(x) = Zw(x x,){Zp,(xna (x)- W} 2)

j=1
Where, w(x-x;)is a weight function which is non zero over a
small domain, called domain of influence, » is the number of
nodes in the domain of influence. The minimization of J(x)

w.r.to a(x) leads to the following set of equations

a(x)=C ' (x)D(x) ¥ (3)

Where, C and D are given as

C=> wix=x)p(x/)p’ (x;) )

=1
D(x) = [w(x = x)p(x)), W(X = X;) p(X; )., (X = X, )p(x,,)] (5)

"=y, 9, 9.9, ] (6)
By substituting Eq. (3) in Eq. (1), the MLS approximants can
be defined as

V(x) =) (%), =Y (7)
1=1
Where, the shape function @;(x) is defined by

@, ()= p,(x)(C'(XDX); =p'C"'D, ®)
j=1
B. The Weight Function
The weight function is non-zero over a small neighborhood
of X, called the domain of influence of node 7. The choice
function affects the

of weight resulting

w(x—x;)
approximation " (x;). In the present work, cubicspline

weight function [15] has been used due to its accuracy, which
can be written as a function of normalized radius 7 as
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2/3 477 +47° for 7 <1/2
W(F) =14/3 - 47 +47% —(4/3)7>  forl/2<F <1 )
0 for 7 >1

With 7 =[[x-x/[|/d,,, 7y =llx-x; ||/, 7, —Hy Vil
d ,=d d d and d

oyl = max 18 @ scaling

mxI max CxI » max € vl

parameter and c¢,; & ¢, atnode [, are the distances to the

nearest neighbors. The weight function at any given point can
be calculated as

W(x = x;) = WE)W(F,) = we w, (10)
Where, w(r)or w(r,) can be calculated by replacing 7

by 7, or 7, in the expression of w(r).

III. THE FLOW OVER A RIGID CYLINDER

A. Variational Formulation

Consider two-dimensional potential flow of an ideal
(inviscid incompressible) fluid over a rigid cylinder, which is
kept between two parallel plates, is given by Laplace equation

2 2
vz\yza\fﬁ\f:o (11a)
Oox oy

attheedge, I, ¥ =Y,(»)

at the edge, T, Y=Y,

at the edge, I, Y=Y, (11b)
at the edge, T, N _ 0

ox
at the edge, T, Y=Y,

The weighted integral form of Eq. (11a) is obtained as

J'wl{a—f 0 \P}dﬂ 0 (12)
ox o’
Q
The weak form of Eq. (12) is given by
ow, oY 6w1 oY O+ J‘ 6_‘I’+6_‘I’ —0 (13)
ox 6x oy Oy oy

Using natural boundary condltlons, the functional /() is

obtained as
2 2
I(‘P):l (6_‘{’] + a_\}/ dQ
2 3 Ox oy

B. Enforcement of Essential Boundary Conditions

(14

In this work, Lagrange multiplier and penalty methods
have been used for the enforcement of essential boundary
conditions. Lagrange multiplier method (LMM) is chosen due
to its accuracy and penalty method is used due to its
simplicity.

Lagrange multiplier method (LMM)
Using Lagrange multiplier method (LMM) to enforce essential
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boundary conditions, the functional / "(¥) is obtained as

2
IF(¥)=— j{@i) +£‘§j ]dQJrJ'zl\P P, (y)}dl

J'zz\}/ P, Jdr + J.JG‘P ‘P3df+jl4‘P P, Jdr
I, I,

arc t

(15)

Taking variation i.e. & r (W) of Eq. (15), it reduces to

T T

oo (2 22 2]

3 ox ox 0% oy
flor fw = w,}+ o wlar + [lon, (v -} + 28w+ (16)
T n
'[[543{\11—\113}”3 SW)dr + _[[514{\1!—\{/4}”45\}']&
arc F/
Since 51 (¥)=0 andsV¥, oAy, Oy, O3 & Ol are

arbitrary in Eq. (16), a following set of equations is obtained
using Eq. (7)

K Gl G2 G3 Gdly [

GI" 0 0 0 0 [[a1 ql

G2" o 0 0 0 {a2p =1q2 (17)

G3" 0 0 0 0 (|23 |43

Ga 0o o o o [a

Where,

K, = J'{qs,ﬁ @, +d] D, O (18a)
Q

f,=0 (18b)

Gl = j@,NKdr (18¢)
r[

G2, = I@,NKdF (18d)
rh

G3,x = jcb,NKdr (18¢)
|

G4,y = I@,del" (181)
l-V

al, = [Nyl (182)
T,

42 = ITzNKdF (18h)
T

43, = IT3NKdF (18i)
rurc

¢4, = [¥iNgdr (18j)
T

Penalty method (PM)

Using penalty method (PM) to enforce essential boundary

conditions, the functional / *(‘P) is obtained as
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rn-L (%) (2]

[Ste—wpdre [She-wPdre [She-w,fdr

Ty

dQ+I {‘{’ ‘{’l(y)} dal’ +
it (19)

arc In

Taking variation i.e. 51  (¥) of Eq. (19), it reduces to

T T
SI'(¥) = (a—\}'j 5(5_‘Yj J{a_\y] 5[‘”} dQ -+
5 ox Oox oy oy

Ia{l{i —, \oWdr + Ia{‘l’ — W, OV +

rh rurc
J.a{‘{’ — ¥, (y)}o¥dr + ja{\y —p,}o¥dr

L T,

Since 51 (¥)=0 and ¥ are arbitrary in Eq. (20), a

following set of equations is obtained using Eq. (7)

(20

[K]{w}={f} @1
K, = j{@{xqﬁj,x +o! @, }dQ+an>,T@Jdr+
o b (22a)
jqb ®,dl +a Iqb qsdrmfds ®,dr
g o
f, :aITl(y)¢,dF+aIT2 ®,dl +
i f (22b)

a J“PZ ®,dl + .[‘PZ @, dr

are b

IV. AXISYMMETRIC FLOW

A. Variational Formulation

Consider the flow of an ideal fluid over a sphere, which is
kept inside a cylinder. This problem is modeled as an
axisymmetric two-dimensional potential flow problem and the
governing Laplacian equation in cylindrical coordinate system
reduces to Stokesian equation given by

o’y o*Y 1Y
V YY) = + — =0 233
(¥)= 022 or* ror (232)
with the following essential and natural boundary conditions

at theedge, I Y, (r) =u,r

at the edge, I, ¥, =0

at theedge, I',,.. ¥, =0 (23b)
o¥

at theedge, I, — =0
Oz

at the edge, I, ¥, =u, H

The weighted integral form of Eq. (23a) is obtained as
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2 2

27 [ oY L =0 (24)
0z or- 1 or

Q

The weak form of Eq. (24) is given by

-2z %6—\P+ Ow, OF + 2w OF rdrdz+
0z 0z Or or r or

(25)

2z J.wlr{—\yn + aa_\P

r

Jar =0

Where, n, and n, are the direction cosines of the outward

normal to the respective edges.

Using natural boundary conditions, the functional 7(\¥')is

obtained as

SRR

B. Enforcement of Essential Boundary Conditions

(26)

r or

2¥Y 6‘1‘} drd=

Both Lagrange multiplier and penalty methods have been
used for the enforcement of essential boundary conditions.

Lagrange multiplier method (LMM)
Using Lagrange multiplier method (LMM) to enforce essential

boundary conditions, the functional 7/ (W) is obtained as

I'(¥)= ﬁj{[aq]) +(8_‘{’] 2 a\F}raf}’dz+
3 oz or r or
[ty —wlar+ [ty —w,lar+
I L,

[l = wslar+ [a,lv - wlar

Tire

Taking variation i.e. 51 (W) of Eq. (27), it reduces to

T
51*(\{/):2;;]{{6—‘?) 5[6—‘11} [aqu (G\Pﬂ drd=

Oz Oz or or
Q
T
w2 || WTo] =— or 8'{‘ N | drdz
S or 6r

+ flon fo —w 0} + 20w lar+ [loz, {w =, }+ 0% Jar
+ J'[azg{l{f—%}u?a\y]dn ﬂ5/14{‘}’—‘1’4}+/14é‘}’]d1"

T,

are G

@7

(28)

Since 51°(¥)=0 andsV¥, oA, O0A,, O & OA4are

arbitrary in Eq. (28), a following set of equations is obtained
using Eq. (7)
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K Gl G2 G3 Gi|ny f
GlI" 0 0 0 0 ({1 ql
G2" 0 0 0 0 Ka2t=4q2
G3" 0 0 0 0 ||*3]| |43
G4 0 0o o o | |l
where,

K, __27zj'{<p,z<p,z ¢J,}drdz+

27 I{‘PI @, + & @, }drdz

Q

f1=0

Gl = J'qs,NKdr
l—‘I

G2,y = jcp,NKdr
Y

h

G3, 4 = I(D,NKdF
r

arc

G4,y = jQ,NKdF

rl
al, = [#0)Ndr
1y
g2 = I\PZNKdr
I
g3, = IW3NKdF
FHV‘L
g4 = IT4NKdF
Iy

Penalty method (PM)

29

(30a)

(30b)

(30¢)

(30d)

(30¢)

(30)

(30g)

(30h)

(30i)

(30))

Using penalty method (PM) to enforce essential boundary

conditions, the functional 7/ *(‘P) is obtained as

. ov ovY 2vov
I (T)—ﬂgﬂ:[a J +( arJ +TE:lrdrdz+
a 2 a 2
[Sle-wolars Sie—wfars
T T,
(04 2 o 2
Fb{\{f—\{g} dr+r'[3{qf—\y4} dr

arc t

Taking variation i.e. SI°(¥) of Eq. (31), it reduces to
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T T
SI'(¥)=2x }{r (a—qj) o"(a—qj} + r(a—TJ [a—q’ﬂ drdz
0z 0z or or
Q
T
27 ‘I’Tﬁ[a—\y}+(a—\yj S | drdz
3 or or

(32)
+Ia{‘¥—‘1’1(y)}é\l‘df+ ja{\y—\yz}a\ydr
I T,
+ Ia{‘P—‘P3}é‘PdF+ Ia{‘I’—‘ﬂ}é‘PdF
L I,

arc

Since 51 (¥)=0 and ¥ are arbitrary in Eq. (32), a
following set of equations is obtained using Eq. (7)

[K]{w}=1{f} (33)
Where,
K, . =2 { T T
1 =2 \r @D, . +P, D, drdz+
Q
2 J'{@,Tczym +@f <I>J}drdz+
J :
; . (34a)
aI¢, ¢>Jdr+aj'q>, ®,dl +
y r,
T T
o J'gzs, ¢Jdr+a.[¢, ®,dr
e 5
fi=a J.‘Pl(y)cbldl“ p J.‘Pz ®,dl" +
g b (34b)
a I‘P3d5,dl“+aj‘1’4¢,df
T T,

arc t

V. NUMERICAL RESULTS AND DISCUSSION

Two problems i.e. (an ideal flow over a rigid cylinder kept
between two parallel plates and an ideal flow over a sphere
kept inside the cylinder) have been chosen for the solution of
potential flow problems. The governing equation for the first
problem is Laplacian equation and for the second one is
Stokesian equation. Four point Gauss quadrature have been
used to evaluate the integrals over two-dimensional domain
and nodal integration technique is utilized to enforce the
essential boundary conditions on the edges. The EFG results
have obtained using linear basis & cubicspline weight
function for two sets of nodes whereas FEM results (Chung
1978) have been obtained for the same sets of nodes.

A. Potential Flow over a Cylinder

The model, data and its boundary conditions used for the
potential flow over a cylinder kept between two parallel plates
are shown in Fig. 1. The EFG results have been obtained
using Lagrange multiplier and penalty methods for two sets of
nodes i.e. 55 and 128 nodes. Table 1 shows a comparison of
stream function values (W) obtained by EFG method with
those obtained by FEM for 55 nodes at few typical locations.
A similar comparison of EFG results with FEM results is
presented in Table 2 at the same locations for 128 nodes. The
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maximum percentage difference in stream function values
obtained by LMM is found to be 2.23% for 55 nodes and
0.26% for 128 nodes, whereas the maximum percentage
difference in stream function values obtained by PM is found
to be 2.23% for 55 nodes and 0.26% for 128 nodes. A
comparison of velocity values (u ) obtained by EFG method
with FEM is presented in Table 3 and Table 4 for 55 and 128
nodes respectively at the few typical locations. The maximum
percentage difference in velocity values obtained by LMM is
found to be 7.67% for 55 nodes and 2.60% for 128 nodes,
whereas the maximum percentage difference in velocity
values obtained by PM has been found to be 7.24% for 55
nodes and 2.60% for 128 nodes. From the results presented in
Tables 1—4, it can be concluded that the results obtained by
LMM are almost similar to PM. Moreover, with the increase
in number of nodes, the EFG results start conversing for both
LMM and PM.

The effect of scaling parameter (d,,, ) on EFG results has

been presented in Fig. 2 at the location (x=2,y=1) for 55

max

and 128 nodes. A similar comparison of EFG results has been
presented in Figs. 3, 4 and 5 at the locations (x =4,y =1.5),
(x=2,y=0.75) and (x =4,y =1.375) respectively for the
same set of sets. From the results presented in Figs. 2—35, it is
observed that the scaling parameter gives acceptable results in
the range 1.1—2 for both LMM and PM.

The effect of penalty parameter (o ) on EFG results has
been presented in Fig. 6 at the location (x=2,y=1) for 55
and 128 nodes. A similar comparison of EFG results has been
presented in Figs. 7, 8 and 9 at the locations (x =4,y =1.5),
(x=2,y=0.75) and (x =4,y =1.375) respectively for 55

and 128 nodes. From Figs. 7—9, it has been noticed that the
acceptable range of penalty parameter varies from 10° to 10"

_. ___________ | s
2H

Free stream
velocity (u,)
Woabybbid
T
i
|
i
i

2L -
\/ atl;, Wy =u,H
_ i
tI,W, =u yfi\
a 5 = H 4
e A Computational "
H domain (Q) /{< atl’,,, 0¥ /0x =0
7,
H 0
atl’,,.,¥;=0
at I;,'%¥, =0

(L=4m, H=2m, r,=1m, u = 1lm/s)

Fig. 1 Potential flow over a cylinder kept between two parallel
plates
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TABLE I COMPARISON OF STREAM FUNCTION (¥ ) WiTH FEM FOR 55 NODES
AT THE FEW TYPICAL LOCATIONS

. 55 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.0 1.5 1.4907 0.25 1.4908 | 0.26 | 1.4870
1.5 1.5 1.4782 0.43 1.4782 | 0.43 | 14719
2.0 1.5 1.4504 0.57 1.4505 | 0.58 |1.4422
3.0 1.5 1.2906 0.62 1.2907 | 0.63 | 1.2826
3.0 1.0 0.6266 1.97 0.6268 | 2.00 | 0.6145
4.0 1.75 | 1.5529 0.01 1.5528 | 0.01 | 1.5527
4.0 1.5 1.0969 0.98 1.0969 | 0.98 | 1.0863
4.0 1.25 | 0.5921 2.23 0.5921 2.23 10.5792

TABLE Il COMPARISON OF STREAM FUNCTION (¥ ) wiTH FEM FOR 128
NODES AT THE FEW TYPICAL LOCATIONS

. 128 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.0 1.5 1.4897 0.17 1.4897 | 0.17 | 1.4872
1.5 1.5 1.4756 0.22 1.4756 | 0.22 |1.4723
2.0 1.5 1.4459 0.23 1.4459 | 0.23 | 1.4426
3.0 1.5 1.2839 0.03 1.2839 | 0.03 | 1.2835
3.0 1.0 0.6092 0.08 0.6092 | 0.08 | 0.6087
40 | 1.75 | 1.5524 0.01 1.5524 | 0.01 |1.5523
4.0 1.5 1.0889 0.13 1.0889 | 0.13 | 1.0875
40 | 1.25 | 0.5869 0.26 0.5869 | 0.26 | 0.5854

TABLE III COMPARISON OF VELOCITY (u) WITH FEM FOR 55 NODES AT THE
FEW TYPICAL LOCATIONS

. 55 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.5 1.75 | 1.0436 1.18 1.0436 | 1.18 1.5
1.5 | 0.75 | 0.9824 0.39 0.9822 | 0.37 1.5
3.0 | 1.25 | 1.3280 0.61 1.3278 | 0.63 3.0
3.0 | 0.75 | 0.8694 7.67 0.8734 | 7.24 3.0
40 |1.875| 1.7884 0.05 1.7884 | 0.05 4.0
4.0 |1.625| 1.8240 2.22 1.8236 | 2.24 4.0
4.0 |1.375| 2.0192 0.46 2.0192 | 0.46 4.0
40 |1.125]| 2.3684 2.23 23684 | 2.23 4.0

TABLEIV COMPARISON OF VELOCITY (u) WITH FEM FOR 128 NODES AT THE
FEW TYPICAL LOCATIONS

. 128 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.5 1.75 | 1.0488 0.62 1.0488 | 0.62 | 1.0553
1.5 | 0.75 | 0.9834 0.33 0.9834 | 0.33 |0.9802
3.0 1.25 | 1.3494 0.13 1.3494 | 0.13 | 1.3477
30 | 0.75 | 1.0144 2.60 1.0144 | 2.60 | 0.9887
4.0 | 1.875| 1.7904 0.02 1.7904 | 0.02 | 1.7908
4.0 |1.625| 1.8540 0.27 1.8540 | 0.27 | 1.8591
4.0 |1.375| 2.0080 0.01 2.0080 | 0.01 |2.0082
4.0 | 1.125| 2.3476 0.25 2.3476 | 0.25 |2.3418
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stream function

stream function

velocity (u)

295

—6— LMM (55 nodes)
—+— PM (55 nodes)
—24— LMM (128 nodes)
[ | —B5— PM (128 nodes)

0.8

0.7

0.6

0.5

0.4
1

Il Il
1.2 1.4 1.6 1.8 2 2.2 24
scaling parameter

. 2 Effect of scaling parameter on stream function (V) at

(x =2 m,y=1m)for two sets of nodes

2.6

—o— LMM (55 nodes)
—+— PM (55 nodes)
—4— LMM (128 nodes)
—H— PM (128 nodes)

0.9+

0.8

0.7

Fig. 3 Effect of scaling parameter on stream function (V) at

1 1
1.2 1.4 1.6 1.8 2 22 24

scaling parameter

(x=4m,y =1.5 m) for two sets of nodes

2.6

—<— LMM (55 nodes)
[ | —*— PM (55 nodes)
—24— LMM (128 nodes)
| | —=— PM (128 nodes)

0.7

0.6

0.5

I I [ I [

0.4
1

L L
1.2 1.4 1.6 1.8 2 2.2 24
scaling parameter

Fig. 4 Effect of scaling parameter on velocity (u ) at
(x=2m,y=0.75 m) for two sets of nodes
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Fig. 5 Effect of scaling parameter on velocity (# ) at
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B. Potential Flow over a Sphere

The model, data and its boundary conditions used for the
potential flow over a sphere kept in cylinder are shown in Fig.
10. Lagrange multiplier and penalty methods have used to
obtain the EFG results for two sets of nodes. Table 5 shows a
comparison of stream function values (') obtained by EFG
method with those obtained by FEM for 55 nodes at few
typical locations. A similar comparison of EFG results with
FEM is presented in Table 6 at the same locations for 128
nodes. The maximum percentage difference in stream function
values obtained by LMM is found to be 0.81% for 55 nodes
and 0.65% for 128 nodes, whereas the maximum percentage
difference in stream function values obtained by PM is found
to be 0.83% for 55 nodes and 0.65% for 128 nodes. A
comparison of velocity values (u ) obtained by EFG method
with FEM is presented in Table 7 and Table 8 for 55 and 128
nodes respectively at the few typical locations. The maximum
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percentage difference in velocity obtained by LMM is found
to be 2.34% for 55 nodes and 0.66% for 128 nodes, whereas
the maximum percentage difference in velocity values
obtained by PM has been found to be 2.27% for 55 nodes and
0.66% for 128 nodes. From the results presented in Tables 5,
6, 7 & 8, it can be concluded that the results obtained by
LMM are almost same as those obtained by PM. Moreover,
with the increase in number of nodes, the EFG results start
conversing for both LMM and PM.

The effect of scaling parameter (d,,, ) on EFG results has
been presented in Fig. 11 at the location (x =2,y =1) for 55
and 128 nodes. A similar comparison of EFG results has been
presented in Fig. 12 at (x=4,y=15), in Fig. 13 at
(x=2,y=0.75) and in Fig. 14 at (x=4,y=1.5) for the
same set of sets. From the results presented in Figs. 11—14, it

has been observed that the scaling parameter gives acceptable
results in the range 1.2—1.8 for both LMM and PM.

The effect of penalty parameter (« ) on EFG results has
been presented in Fig. 15 at the location (x =2,y =1) for 55
and 128 nodes. A similar comparison of EFG results has been
presented in Figs. 16, 17 and 18 at the locations
(x=4,y=15), (x=2,y=0.75) and (x=4,y=15)
respectively for 55 and 128 nodes. From Figs. 15—18, it
has been noticed that the acceptable range of penalty
parameter varies from 10° to 10"

r
A
25
g i
= 2
X — 2L ;i
\/ atl',, W, =u,H
_ e L |
A~
atly, ¥ —ur Computational
A domain (Q)
H
atl’ ., W, =0
at rb,lyz =0 ae ’

(L=4m, H=2m, r,=l m, u,= lm/s)

Fig. 10 Potential flow over a sphere kept inside the cylinder
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TABLE V COMPARISON OF STREAM FUNCTION ( ¥ ) WITH FEM FOR 55 NODES
AT THE FEW TYPICAL LOCATIONS

. 55 nodes

Location

EFG FEM
X y LMM | % diff PM % diff
1.0 1.5 1.1938 0.16 1.1936 | 0.14 | 1.1919
1.5 1.5 1.1465 0.16 1.1463 | 0.14 | 1.1447
2.0 1.5 1.1169 0.13 1.1167 | 0.12 | 1.1154
3.0 1.5 1.0178 0.20 1.0178 | 0.20 | 1.0158
3.0 1.0 0.3443 0.55 0.3443 | 0.55 |0.3462
4.0 1.75 | 1.4152 0.13 1.4150 | 0.14 | 1.4170
4.0 1.5 0.8989 0.19 0.8988 | 0.18 | 0.8972
4.0 1.25 | 0.4299 0.81 0.4298 | 0.83 |0.4334

TABLE VI COMPARISON OF STREAM FUNCTION (V' ) wiTH FEM FOR 128
NODES AT THE FEW TYPICAL LOCATIONS

. 128 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.0 1.5 1.2028 0.06 1.2026 | 0.04 |1.2021
1.5 1.5 1.1565 0.04 1.1562 | 0.02 |1.1560
2.0 1.5 1.1266 0.06 1.1264 | 0.04 |1.1259
3.0 1.5 1.0248 0.03 1.0247 | 0.02 |1.0245
3.0 1.0 0.3548 0.50 0.3548 | 0.50 | 0.3566
40 | 1.75 | 1.4145 0.03 1.4144 | 0.04 |1.4149
4.0 1.5 0.8947 0.11 0.8946 | 0.12 |0.8957
40 | 1.25 | 0.4280 0.65 0.4280 | 0.65 |0.4308

TABLEVII COMPARISON OF VELOCITY (% ) WITH FEM FOR 55 NODES AT THE

FEW TYPICAL LOCATIONS
. 55 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.5 1.75 | 0.9756 0.18 0.9756 | 0.18 [0.9774
1.5 | 0.75 | 1.0325 0.15 1.0323 | 0.13 [1.0310
3.0 | 1.25 | 1.0776 0.59 1.0776 | 0.59 |1.0713
3.0 | 0.75 | 0.8290 2.34 0.8296 | 2.27 |0.8489
4.0 |1.875| 1.2476 0.32 1.2480 | 0.35 |1.2436
4.0 |1.625| 1.2708 0.70 1.2706 | 0.71 |1.2797
4.0 |1.375] 1.3644 1.13 1.3644 | 1.13 |1.3492
4.0 |1.125| 1.5285 0.80 1.5282 | 0.82 |1.5409

TABLE VIII COMPARISON OF VELOCITY ( % ) WITH FEM FOR 128 NODES AT
THE FEW TYPICAL LOCATIONS

. 128 nodes
Location
EFG FEM

X y LMM | % diff PM % diff

1.5 1.75 | 0.9643 0.03 0.9643 | 0.03 |0.9646
1.5 | 0.75 | 1.0123 0.03 1.0120 | 0.00 |1.0120
3.0 1.25 | 1.0720 0.30 1.0718 | 0.28 |1.0688
3.0 | 0.75 | 0.8504 0.24 0.8504 | 0.24 |0.8484
40 |1.875| 1.2491 0.08 1.2493 | 0.10 | 1.2481
40 |1.625| 1.2795 0.10 1.2795 | 0.10 |1.2782
4.0 |1.375| 1.3576 0.40 1.3573 | 0.38 |1.3522
40 |1.125| 1.5218 0.66 1.5218 | 0.66 |1.5319
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VI. CONCLUSIONS

In this paper, meshless element free Galerkin method has
been successfully extended to solve two-dimensional potential
flow problems. The essential boundary conditions were
enforced using penalty and Lagrange multiplier techniques.
Four point Gauss quadrature were used to evaluate the
integrals over the two-dimensional domain and nodal
integration scheme was used for the application of essential
boundary conditions on the edges. The meshless numerical
results have been obtained for a sample data and are compared
with those obtained by finite element method. It was noticed
that the results obtained by EFG method have been found in
good agreement with those obtained by finite element method.
Moreover, with the increase in number of nodes EFG results
start conversing for both Lagrange multiplier and penalty
methods. From above analysis, it was also noticed that the
results obtained by Lagrange multiplier and penalty methods
are almost similar for potential flow problems. The range of
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scaling (d .«
be 1.2 < 4
it can be concluded that the penalty method can be used in

fluid flow problems due to its simplicity in applying the
essential boundary conditions.

) and penalty (& ) parameters has been found to
<1.8 and 10°< & < 10" respectively. Finally

max —

NOTATIONS

a; (x) = non constant coefficients

% diff = percentage difference of EFG results with FEM
H = height of computational domain

L = Length of computational domain

m = number of terms in the basis

n = number of nodes in the domain of influence
Ny = Lagrange interpolant
p; (X) = monomial basis function

7 = normalized radius
¥, = radius of sphere/cylinder
u = X -component of velocity

w(x - X 1) = weight function used in MLS approximation

W, = weighting function used in weighted integral form
O = penalty parameter
/11, /12, /13 and /14 = Lagrange multipliers

I" = boundary of the computational domain
Q) = two-dimensional computational domain

¥ = stream function
ph (x) = approximation function for stream function

@ (x) = shape function
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