Search results for: Dynamic Complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2655

Search results for: Dynamic Complexity

2505 Climate Change and Environmental Education: The Application of Concept Map for Representing the Knowledge Complexity of Climate Change

Authors: Hsueh-Chih, Chen, Yau-Ting, Sung, Tsai-Wen, Lin, Hung-Teng, Chou

Abstract:

It has formed an essential issue that Climate Change, composed of highly knowledge complexity, reveals its significant impact on human existence. Therefore, specific national policies, some of which present the educational aspects, have been published for overcoming the imperative problem. Accordingly, the study aims to analyze as well as integrate the relationship between Climate Change and environmental education and apply the perspective of concept map to represent the knowledge contents and structures of Climate Change; by doing so, knowledge contents of Climate Change could be represented in an even more comprehensive way and manipulated as the tool for environmental education. The method adapted for this study is knowledge conversion model compounded of the platform for experts and teachers, who were the participants for this study, to cooperate and combine each participant-s standpoints into a complete knowledge framework that is the foundation for structuring the concept map. The result of this research contains the important concepts, the precise propositions and the entire concept map for representing the robust concepts of Climate Change.

Keywords: Climate Change, knowledge complexity, concept map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
2504 A Study of Under Actuator Dynamic System by Comparing between Minimum Energy and Minimum Jerk Problems

Authors: Tawiwat V., Phermsak S., Noppasit C.

Abstract:

This paper deals with under actuator dynamic systems such as spring-mass-damper system when the number of control variable is less than the number of state variable. In order to apply optimal control, the controllability must be checked. There are many objective functions to be selected as the goal of the optimal control such as minimum energy, maximum energy and minimum jerk. As the objective function is the first priority, if one like to have the second goal to be applied; however, it could not fit in the objective function format and also avoiding the vector cost for the objective, this paper will illustrate the problem of under actuator dynamic systems with the easiest to deal with comparing between minimum energy and minimum jerk.

Keywords: Under actuator, Dynamic optimal control, Minimumjerk, Minimum energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
2503 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
2502 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells

Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs

Abstract:

Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.

Keywords: Dynamic magnetic field, Lipofection, Magnetofection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
2501 The Analysis of Duct Model Through Structural and Dynamic Schemes

Authors: S. H. Yahaya, J. M. Ali, M. R. Arham

Abstract:

This paper presents the analysis of duct design using static and dynamic approaches. The static approach is used to find out applicability between the design and material applied. The material used in this paper is Thermoplastic Olefins (TPO). For the dynamic approach, the focusing is only on the CFD simulations. The fatigue life in this design and material applied also covered.

Keywords: CFD, structural analysis, fluid analysis, duct design, fatigue life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
2500 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)

Authors: K. Vijayalakshmi, S. Radhakrishnan

Abstract:

In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.

Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
2499 Development and Evaluation of a Dynamic Cardiac Phantom for use in Nuclear Medicine

Authors: Marcos A. Dullius, Ramon C. Fernandes, Divanízia N. Souza

Abstract:

The aim of this study was to develop a dynamic cardiac phantom for quality control in myocardial scintigraphy. The dynamic heart phantom constructed only contained the left ventricle, made of elastic material (latex), comprising two cavities: one internal and one external. The data showed a non-significant variation in the values of left ventricular ejection fraction (LVEF) obtained by varying the heart rate. It was also possible to evaluate the ejection fraction (LVEF) through different arrays of image acquisition and to perform an intercomparison of LVEF by two different scintillation cameras. The results of the quality control tests were satisfactory, showing that they can be used as parameters in future assessments. The new dynamic heart phantom was demonstrated to be effective for use in LVEF measurements. Therefore, the new heart simulator is useful for the quality control of scintigraphic cameras.

Keywords: sheart, nuclear medicine, phantom

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
2498 Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition

Authors: Kooshyar Passbakhsh, Maryam Yazdi

Abstract:

Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the increasing uses of geosynthetic reinforced soil systems in the regions, which bear frequent earthquakes, the study of dynamic behavior of structures seems necessary. Determining the reinforcement forces is; therefore, one of the most important and main points of discussions in designing retaining walls, by which we prevent from conservative planning. Thus, this paper intended to investigate the effects of such parameters as wall height, acceleration type, vertical spacing of reinforcement, type of reinforcement and soil type on forces and deformation through numerical modeling of the geosynthetic reinforced soil retaining walls (GRSRW) under dynamic loading with finite difference method by using FLAC. The findings indicate rather positive results with each parameter.

Keywords: Geosynthetic Reinforced Soil Retaining Walls (GRSRW), dynamic analysis, Geosynthetic forces, Flac

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2497 A Design and Implementation Model for Web Caching Using Server “URL Rewriting“

Authors: Mostafa E. Saleh, A. Abdel Nabi, A. Baith Mohamed

Abstract:

In order to make surfing the internet faster, and to save redundant processing load with each request for the same web page, many caching techniques have been developed to reduce latency of retrieving data on World Wide Web. In this paper we will give a quick overview of existing web caching techniques used for dynamic web pages then we will introduce a design and implementation model that take advantage of “URL Rewriting" feature in some popular web servers, e.g. Apache, to provide an effective approach of caching dynamic web pages.

Keywords: Web Caching, URL Rewriting, Optimizing Web Performance, Dynamic Web Pages Loading Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
2496 A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks

Authors: Jong-Moon Chung, Hyung-Weon Cho, Ki-Yong Jin, Min-Hee Cho

Abstract:

In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.

Keywords: Co-Channel Interference, Dynamic TDD, MobileMultihop Reply, Cellular Network, Time Division Multiple Access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
2495 A Processor with Dynamically Reconfigurable Circuit for Floating-Point Arithmetic

Authors: Yukinari Minagi , Akinori Kanasugi

Abstract:

This paper describes about dynamic reconfiguration to miniaturize arithmetic circuits in general-purpose processor. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operation. The proposed arithmetic circuit performs floating-point arithmetic which is frequently used in science and technology. The data format is floating-point based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.

Keywords: dynamic reconfiguration, floating-point arithmetic, double precision, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2494 EHD Effect on the Dynamic Characteristics of a Journal Bearing Lubricated with Couple Stress Fluids

Authors: B. Chetti, W. A. Crosby

Abstract:

This paper presents a numerical analysis for the dynamic performance of a finite journal bearing lubricated with couple stress fluid taking into account the effect of the deformation of the bearing liner. The modified Reynolds equation has been solved by using finite difference technique. The dynamic characteristics in terms of stiffness coefficients, damping coefficients, critical mass and whirl ratio are evaluated for different values of eccentricity ratio and elastic coefficient for a journal bearing lubricated with a couple stress fluids and a Newtonian fluid. The results show that the dynamic characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids.

Keywords: Circular bearing, elastohydrodynamic, stability, couple stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
2493 Strategic Management via System Dynamics Simulation Models

Authors: G. Papageorgiou, A. Hadjis

Abstract:

This paper examines the problem of strategic management in highly turbulent dynamic business environmental conditions. As shown the high complexity of the problem can be managed with the use of System Dynamics Models and Computer Simulation in obtaining insights, and thorough understanding of the interdependencies between the organizational structure and the business environmental elements, so that effective product –market strategies can be designed. Simulation reveals the underlying forces that hold together the structure of an organizational system in relation to its environment. Such knowledge will contribute to the avoidance of fundamental planning errors and enable appropriate proactive well focused action.

Keywords: Strategic Management, System Dynamics, Modelingand Simulation, Strategic Planning, Organizational Dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
2492 Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids

Authors: Carine Moussaed, Stephen Wornom, Bruno Koobus, Maria Vittoria Salvetti, Alain Dervieux,

Abstract:

The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.

Keywords: variational multiscale LES, dynamic SGS model, unstructured grids, circular cylinder, square cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
2491 Behavior Model Mapping and Transformation using Model-Driven Architecture

Authors: Mohammed Abdalla Osman Mukhtar, Azween Abdullah, Alan Giffin Downe

Abstract:

Model mapping and transformation are important processes in high level system abstractions, and form the cornerstone of model-driven architecture (MDA) techniques. Considerable research in this field has devoted attention to static system abstraction, despite the fact that most systems are dynamic with high frequency changes in behavior. In this paper we provide an overview of work that has been done with regard to behavior model mapping and transformation, based on: (1) the completeness of the platform independent model (PIM); (2) semantics of behavioral models; (3) languages supporting behavior model transformation processes; and (4) an evaluation of model composition to effect the best approach to describing large systems with high complexity.

Keywords: MDA; PIM, PSM, QVT, Model Transformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
2490 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: Influence maximization, dynamic social networks, diffusion, social influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
2489 Geometry Design Supported by Minimizing and Visualizing Collision in Dynamic Packing

Authors: Johan Segeborn, Johan S. Carlson, Robert Bohlin, Rikard Söderberg

Abstract:

This paper presents a method to support dynamic packing in cases when no collision-free path can be found. The method, which is primarily based on path planning and shrinking of geometries, suggests a minimal geometry design change that results in a collision-free assembly path. A supplementing approach to optimize geometry design change with respect to redesign cost is described. Supporting this dynamic packing method, a new method to shrink geometry based on vertex translation, interweaved with retriangulation, is suggested. The shrinking method requires neither tetrahedralization nor calculation of medial axis and it preserves the topology of the geometry, i.e. holes are neither lost nor introduced. The proposed methods are successfully applied on industrial geometries.

Keywords: Dynamic packing, path planning, shrinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
2488 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software

Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura

Abstract:

This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈

Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
2487 Transient Stress Analysis on Medium Modules Spur Gear by Using Mode Super Position Technique

Authors: Ali Raad Hassan

Abstract:

Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. ANSYS software has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. The effect of rotational speed of the gear on the dynamic response of gear tooth has been studied and design limits have been discussed.

Keywords: Spur gear, Natural frequency, transient analysis, Mode super position technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
2486 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Newton interpolation, Lagrange interpolation, linear complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558
2485 A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks

Authors: Pramod Goyal, S. K. Saxena

Abstract:

The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.

Keywords: Dynamic decision model, Seamless handoff, Vertical handoff, Wireless networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
2484 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3608
2483 Dynamic Analyze of Snake Robot

Authors: Seif Dalilsafaei

Abstract:

Crawling movement as a motive mode seen in nature of some animals such as snakes possesses a specific syntactic and dynamic analysis. Serpentine robot designed by inspiration from nature and snake-s crawling motion, is regarded as a crawling robot. In this paper, a serpentine robot with spiral motion model will be analyzed. The purpose of this analysis is to calculate the vertical and tangential forces along snake-s body and to determine the parameters affecting on these forces. Two types of serpentine robots have been designed in order to examine the achieved relations explained below.

Keywords: Force, Dynamic analyze, Joint and Snake robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
2482 Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload

Authors: Shinji Oouchi, Hajime Nomura, Kung-Da Wu, Yong-Run Chen, Jui-Pin Hung

Abstract:

This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation.

Keywords: Dynamic compliance, Bearing preload, Modal damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
2481 Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target

Authors: Ellips Masehian, Yalda Katebi

Abstract:

This paper presents a new sensor-based online method for generating collision-free near-optimal paths for mobile robots pursuing a moving target amidst dynamic and static obstacles. At each iteration, first the set of all collision-free directions are calculated using velocity vectors of the robot relative to each obstacle and target, forming the Directive Circle (DC), which is a novel concept. Then, a direction close to the shortest path to the target is selected from feasible directions in DC. The DC prevents the robot from being trapped in deadlocks or local minima. It is assumed that the target's velocity is known, while the speeds of dynamic obstacles, as well as the locations of static obstacles, are to be calculated online. Extensive simulations and experimental results demonstrated the efficiency of the proposed method and its success in coping with complex environments and obstacles.

Keywords: Dynamic Environment, Moving Target, RobotMotion Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
2480 Design and Analysis of a Novel 8-DOF Hybrid Manipulator

Authors: H. Mohammadipanah, H. Zohoor

Abstract:

This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.

Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
2479 Computer Proven Correctness of the Rabin Public-Key Scheme

Authors: Johannes Buchmann, Markus Kaiser

Abstract:

We decribe a formal specification and verification of the Rabin public-key scheme in the formal proof system Is-abelle/HOL. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. The analysis presented uses a given database to prove formal properties of our implemented functions with computer support. Thema in task in designing a practical formalization of correctness as well as security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as eficient formal proofs. This yields the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Consequently, we get reliable proofs with a minimal error rate augmenting the used database. This provides a formal basis for more computer proof constructions in this area.

Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
2478 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
2477 Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming

Authors: Michael Todinov, Eberechi Weli

Abstract:

The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expressed as integer number), the worst-case running time of the proposed algorithm is O (n x (B+1)), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry. 

Keywords: Optimisation, railway risk reduction, budget constraints, dynamic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
2476 Adaptive Distributed Genetic Algorithms and Its VLSI Design

Authors: Kazutaka Kobayashi, Norihiko Yoshida, Shuji Narazaki

Abstract:

This paper presents a dynamic adaptation scheme for the frequency of inter-deme migration in distributed genetic algorithms (GA), and its VLSI hardware design. Distributed GA, or multi-deme-based GA, uses multiple populations which evolve concurrently. The purpose of dynamic adaptation is to improve convergence performance so as to obtain better solutions. Through simulation experiments, we proved that our scheme achieves better performance than fixed frequency migration schemes.

Keywords: Genetic algorithms, dynamic adaptation, VLSI hardware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624