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Abstract—Influence and influence diffusion have been studied
extensively in social networks. However, most existing literature on
this task are limited on static networks, ignoring the fact that the
interactions between users change over time. In this paper, the
problem of maximizing influence diffusion in dynamic social
networks, i.e., the case of networks that change over time is studied.
The DM algorithm is an extension of Matrix Influence (MATI)
algorithm and solves the Influence Maximization (IM) problem in
dynamic networks and is proposed under the Linear Threshold (LT)
and Independent Cascade (IC) models. Experimental results show
that our proposed algorithm achieves a diffusion performance better
by 1.5 times than several state-of-the-art algorithms and comparable
results in diffusion scale with the Greedy algorithm. Also, the
proposed algorithm is 2.4 times faster than previous methods.

Keywords—Influence maximization, dynamic social networks,
diffusion, social influence.

[. INTRODUCTION

ECENTLY, social networks are playing a fundamental

role in information propagation, since more and more
people prefer to publicize their views or ideas on the networks.
One of the main research interests is to understand the way of
influence and information spread in social networks. For
example, a company wants to market a new product through
the “word of mouth” effect in the social network. It wishes to
find and persuade a small subset of users (seed users) to adopt
the product so as to trigger a large number of further adoptions
via social influence. At first, we need to understand the
influence diffusion by answering questions such as, how to be
selected the seed users so that the total number of triggered
users to adopt the product can be maximized (a.k.a. influence
maximization) [1], [9], [16], [17].

A natural problem for social influence is how to find the
initial users that will eventually influence the largest numbers
of users, which is known as influence maximization (IM).
Given a social network G and an integer k, IM’s goal is to
select k seed users in G in hope that adopting a promoted
product or idea can maximize the expected number of final
adopted users through word-of-mouth effect [1], [7], [16].
Initially proposed by Kempe et al. [6], the problem of IM has
been intensively studied by a number of subsequent projects,
improvements, or modifications from multiple aspects,
including estimation of influence size, adaptive seeding,
boosting seeding, and many others.

The main task in IM lies in estimating the expected size of
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influenced users of each alternative seed set based on each
user’s activation probabilities, referring to the probability that
a user successfully influences his social neighbors after being
influenced. The influences among users are quantified by
those activation probabilities [1], [16], [17]. While existing
literature works well in finding the most influential seed users,
they are all limited to the assumption that the number of nodes
in the network, along with the edges between them, are fixed
during influence diffusion. Consequently, it violates real
practices as many realistic social networks usually develop
over time.

In this paper, we study the problem of IM on dynamic
social networks which are changing over time, and specifically
under the LT and IC models. According to both, at any
discrete time step a user can be either active or inactive (for
example, has adopted the product or not) and the information
propagates until no more users can be activated.

The main contributions of this work can be summarized as
follows:

e The proposed DM algorithm is an efficient IM algorithm
for dynamically changing networks.

e DM on large scale real-world graphs under the LT and IC
models performs better than several alternative methods
in terms of influence and computation time, and achieves
comparable results to MC Greedy algorithm in terms of
influence.

II. RELATED WORK

IM aims at a set of k users that maximize the influence
spread over a network. Previous efforts on IM can be
generally categorized into static methods and dynamic
methods. In the case of static methods, there has been a vast
amount of literature.

A Monte-Carlo simulation method is proposed by Kempe
[6], which estimates o(S) repeating Monte-Carlo simulation,
where S is the set of seed nodes and ¢ (S) is the average
number of infected vertices. Chen et al. [2] proposed prefix
excluding maximum influence arborescence (PMIA) model to
find seed vertices focusing on the paths with high information
diffusion ratio. Chen et al. [3] also suggested Degree Discount
based on node degree where the nodes which are adjacent to
the selected node, are given penalty. When node v is selected
as a seed node and u is its neighbor, it is possible that v
propagates information to u, so selecting nodes other than u as
seed nodes is better for information diffusion.

Two categories of methods have been proposed for the IM
problem in dynamic networks: Monte-Carlo simulation-based
methods and heuristic-based methods. The previous method is
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proposed by Habiba and Berger-Wolf [5]. The method
estimates the scale of propagation o(-) by repeating Monte-
Carlo simulation in the case of static networks. Since () is a
monotonic and submodular function also in dynamic
networks, this method achieves large-scale propagation [11],
[12]. However, this method’s computational cost is high as in
static networks [11]. Osawa et al. [12], [14] proposed a
heuristic method for calculating o(-) faster. After o(S) is
computed, seed nodes are obtained by greedy algorithm as in
the method by Monte-Carlo simulation. Also, Murata and
Koga [10] proposed three methods, Dynamic Degree
Discount, Dynamic CI and Dynamic RIS, as extensions of
static network methods to dynamic network methods, based on
the node degree, the degree of distant nodes, and the reachable
nodes, respectively.

II1. PRELIMINARIES AND PROBLEM STATEMENT

A social network is typically modeled as a directed graph
G = (V,E), consisting of |V| users represented as nodes and
|E| directed edges reflecting the relationship between users.
An influence weight p,,,, € [0,1] is also associated with each
edge (u,v) € E, and represents the probability that a node u
will affect node v. We assume that T (u)={ti, T2, ..., ™™}
represents the set of all possible paths that exist in the graph
starting from node U and leading to “leaf” nodes and are
generated by the Depth-First Search (DFS) algorithm. Each
path 1; consists of a sequence of nodes: t; = {nii, np, ..., Nin}.
M is the number of all possible paths from a node u and N
represents the number of the nodes and the index of the
terminal node of path 7; [15].

Let pf41,1<I<N-1, represents the influence
probability between two sequential nodes in path 7. Then F(ti)
= {fi1, fio...., fin} represents the cumulative probability path for
every path 1; starting from a node u to be active (i.e., a path is
considered active if each one of its edges is active). Each fj is
equal to [T/Z; plrjﬂ if j > 1, and 1 otherwise [15].

Let ¥(u,v) = {1, ¥,,.., Y.} denote the set of all passible
unique paths from a node u to a node v, where each path ; =
{ni1,ny, ..., Ny} consists of a sequence of nodes, L is the
number of all possible paths between nodes u and v, and N
represents the number of nodes of path ;, with L<M.
Respectively, @) ={9,;,0,,,.-,¢,,}  denotes  the
probability for every path y; between nodes u and v, and is
calculated in the same way as f;;[15].

Goyal et al. [4] showed that the spread of a set S of nodes is
the sum of the spread of each individual u € S on the
subgraphs induced by the setV — S + u:

0(S) = Lvev Lx PrIX]I(S,v,X) = Xyer A(S,V)

= Yues 0’ ST(w) (1
where X is a possible live-edge graph, Pr[X] is the sampling
probability of X, I(S, v, X) is an indicator function equal to 1
if there is a live path in X from S to v and 0 otherwise, A(S,v)
is the probability of the single node v to be influenced by S,
and o ~5*%(u) denotes the total influence of u in the subgraph
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induced by the set V — S 4+ u ((V\S) U {u}).
Under the LT model, the calculation of influence after a
node x addition to a set of nodes S is given by:

0(S+x) = 0(8) + (%) = Lyes 2(x,¥) = Xyes 2(,X) (2)

under the IC model the following heuristics [13] are used:

1. for each path originating from node x or a node of seed
set S, we keep the subpaths before finding a node of S U
{u}.

2. o(S + x) is equal to the sum of the influence probabilities
that correspond to each of these subpaths.

Also, the forward cumulative influence Q(u,v) corresponds
to the influence of node u to v and to the nodes that can be
found right after v in the paths T(u) of node u.

In this paper, we model a dynamic social network G =
{G',G?,...,GT} as a set of network snapshots evolving over
time. We assume that the nodes remain the same while the
edges in each network snapshot change through time. This is
used as assumption in other papers as well [3], [11]. Each
snapshot graph Gt = (V, E') is modeled as a directed network
which includes edges appearing during time t = 1,2,...,T.
Moreover, an influence weight pf , € [0,1] is also associated
with each directed edge (u,v) € E!, and represents the
probability of node u to influence node v at time ¢.

Our goal is to discover a set of seed sets, St,t = 1,2, ..., T,
whose size is k, such that it maximizes the influence o (S?).

Table I presents the notations used in this paper.

TABLEI
NOTATIONS
Notation Description
Pluv Influence weight on directed edge (u,v) at t time-
step
(8" Influence of a set of nodes St to the graph
A'(u,v) Influence of node u to node v at time-step t
0'(u,v) Forward cumulative influence of node u to node v,
at time-step t
T '(w)={1",1%, ... .t}  Set of all possible paths starting from node u, at
time-step t
T = {nj;, np, ..., nin} Path consisting of N nodes starting from node u, at
time-step t
F (t4) = {fii, f, ...., fin} Cumulative probability path for path ti, at time-
step t
Y(u,v)={y', y', .... W'} Setof all possible paths between nodes u and v, at
time-step t
Wi={n, np, ..., nin} Path between nodes u and v, at time-step t

Cumulative probability path for path yti, at time-
step t

DEW)={Pit, Pizs--sPin}

IV. PROPOSED METHOD

In this section, we presented a method for the IM Problem
in Dynamic Networks: the DM algorithm. The proposed
method is an extension of static method MATTI [14]. Based on
the functions 4, 2 and influence function o, we use functions
A' of activation probability and the forward cumulative
influence Q' at time stamp t, fort = 1,2, ..., T.
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Algorithm 1: DM LT

Input: G% k,T =k = number of seed nodes, T = max time-step
Initialize: St = 0, vt =1,2,...,T
fort =0to T do
if t == 0 then
Calculate At, 0t
Calculate Q¢
fori = 1tok do
s,0(s) = Q.top()
St = StU{s}
U = V\St
for each u € U do
o(w) = Q' (W
for each v € St do
o(u) —= Q' (v,u)
o(u) —= Qt(u, V)
Qt.add((u,o(w)))
Update Gt to G**?
Update A%, 0!
return S = {51,52,....,5T}

Algorithm 2: DM IC

Input: G% k,T =k = number of seed nodes, T = max time-step
Initialize: St = 0,vt =1,2,...,T
fort =0to T do
if t == 0 then
Calculate A*
Calculate Q¢
fori = 1tokdo
s,a(s) = Q“.top()
St = StU{s}
U = V\St
for each u € U do
o(St+ u) = |St U{u}|
a(u)+= influence(S*?)
o (u)+= influence(S* U{u})
Q'.add((u,a(S* Uu) — a(SH)))
Update Gt to G'+1
Update A*
return S = {51,52,...,57}

We name these algorithms DM LT (Dynamic MATI under
LT), shown in Algorithm 1, and DM IC (Dynamic MATI

under IC) shown in Algorithm 2.

V. EXPERIMENTS

In this section, we present results of experiments conducted

on real-world dynamic networks to test the performance of
proposed algorithms. The dynamic networks we used in the
experiments are listed below.

EmailEUCore: The network was generated using email
data from a large European research institution. It
includes anonymized information about all incoming and
outgoing email between members of the institution. The
e-mails represent communication only between institution
members and not with of the rest of the world. A directed
edge (u, v, t) means that person u sent an email to person
v at time t [19].
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Email-dnc: The directed network of emails in the 2015
Democratic National Committee email leak. Each edge in
the dataset denotes that an email has been sent from a
person to another person [18].
High school dynamic contact networks: This dataset
contains the temporal network of contacts between
students in a high school in Marseilles, France. In case of
multiple active contacts in a given interval, multiple lines
start with the same value of time t which is measured in
seconds [20].
Primary school temporal network data: This data set
contains the temporal network of contacts between the
children and teachers. In case of multiple active contacts
in a given interval, multiple lines start with the same
value of time t which is measured in seconds [20].
Hospital ward dynamic contact network: This dataset
contains the temporal network of contacts between
patients, 29 patients and 46 health-care workers (HCWs)
and among HCWs in a hospital ward in Lyon, France,
from December 6, 2010 at 1:00 pm to December 10, 2010
at 2:00 pm. If multiple contacts are activated in a given
interval, we see multiple lines starting with the same
value of t. Time is measured in seconds [20].
CollegeMsg: This dataset is comprised of private
messages sent on an online social network at the
University of California, Irvine. Users could search the
network for others and then initiate conversation based on
profile information. An edge (u, v, t) means that user u
sent a private message to user v at time t [19].
WikiTalk: This is a temporal network representing
Wikipedia users editing each other's Talk page. A directed
edge (u, v, t) means that user u edited user v's talk page at
time t [19].

Table II shows the number of nodes and edges of each

dataset.
TABLEII
DATASETS
Datasets Nodes Edges
. 12216 (Temporal),
EmailEuCore 986 24929 (Static)
Email-dnc 92 9800
High school dynamic contact network 327 188,508
Primary school temporal network data 242 125,775
Hospital ward dynamic contact network 75 32,424
59835 (Temporal),
CollegeMsg 1899 20296 (Static)
o 7833140 (Temporal),
WikiTalk 1140149 3309592 (static)
A. Evaluation

We compared the performance of the proposed algorithms

with the following ones:

652

Dynamic Degree Discount [§8]
Dynamic CI [8]
Dynamic RIS [8]
Osawa [10]
MC Greedy [3]
The results of information propagation for different seed
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sizes k are shown in Fig. 1 with fixed threshold 8 = 0.1. The
x-axis shows the size of the seed set, while the y-axis shows

Fig. 1, MC Greedy achieves the highest diffusion in all
datasets. Diffusion of the proposed methods are inferior by 5%

the number of propagated vertices. Values of x-axis are * 4 compared to MC Greedy, although it is better than the other
. . . _m ones (Dynamic Degree Discount, Dynamic CI, Dynamic RIS,
100, i.e., the percentage of seed vertices to all vertices in the

o),
4
of influence o(S) to all vertices in the network. As shown in

network. Values of y-axis are 100, i.e., the percentage

Osawa). Specifically, DM - IC performs higher diffusion by
1.5% than several state-of-the-art algorithms.
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Fig. 1 Comparison of DM-LT and DM-IC with state-of-the-art algorithms in terms of % of infected nodes with varying seed size for different
datasets

Fig. 2 shows the computational time needed for 6 set to 0.1
and for varying seed nodes. X-axis shows the size of seed
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vertices and y-axis shows the computational time in log-scale.
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Fig. 2 Comparison of DM-LT and DM-IC with state-of-the-art algorithms in terms of computation time when the seed size k changes for
different datasets

Fig. 2 shows that for all datasets, while all other methods
including the proposed ones can compute seed vertices in
realistic time, MC Greedy needs several hours to compute
seed vertices. This shows that MC Greedy is intractable in
realistic time for large scale networks. The computational time
of proposed methods, DM LT and DM-IC, is about the same
for the Primary School dataset. Regarding the comparison
with proposed methods, Dynamic RIS and Dynamic Degree
Discount, except the Primary School dataset, where Dynamic
RIS is faster and the Hospital dataset, where Dynamic Degree
Discount and DM-IC are almost the same, DM-IC is faster
than them or the same.

VI. CONCLUSION

We proposed DM, a method for the IM problem on
dynamic networks which extends methods in static networks.
Based on the experiments performed for comparing with
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previous methods, the proposed method performs better in
terms of diffusion, with the exception of MC Greedy which
achieves better diffusion. However, computational time of the
proposed method is better by 5% than MC Greedy. As future
work, it is planned to investigate the IM problem in dynamic
networks in case of different community subgraphs, as well as
the case of partially observed dynamic graphs. In addition, we
intend to study the IM problem in dynamic networks using
other models.
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