Search results for: Data Flow Analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14724

Search results for: Data Flow Analysis

14574 An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump

Authors: Mohammad Taghi Shervani Tabar, Zahra Poursharifi

Abstract:

The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent.

Keywords: Axial flow pump, Gap cavitation, Leakage vortex, Tip vortex cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635
14573 A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs

Authors: Yu-Chuan Chang, Chen Shi-Kai

Abstract:

A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.

Keywords: Return flow, water reuse, wetland paddy, return flow ratio (RR), water reuse ratio (WRR), water supplementary ratio(WSR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
14572 Comparative Study on Status and Development of Transient Flow Analysis Including Simple Surge Tank

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Transient analysis is important and one of the more challenging and complicated flow problem in the design and the operation of water pipeline systems. Transient can produce large pressure forces and rapid fluid acceleration into a water pipeline system, these disturbances may result in device failures, system fatigue or pipe ruptures, and even the dirty water intrusion. Several methods have been introduced and used to analyze transient flow, an accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic method. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the simple surge tank ”open surge tank” reduces the unfavorable effects of transients.

Keywords: Elastic method, Flow transient, Open surge tank, Pipeline, Protection devices, Numerical model, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937
14571 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers

Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman

Abstract:

Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.

Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068
14570 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
14569 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI

Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath

Abstract:

The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.

Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
14568 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters

Authors: B. Saha Roy, T. Medhi, S. C. Saha

Abstract:

To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e. it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.

Keywords: AA6061-T6, friction stir welding, material flow, CFD modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
14567 An Investigation into Air Ejector with Pulsating Primary Flow

Authors: Václav Dvořák, Petra Dančová

Abstract:

The article deals with pneumatic and hot wire anemometry measurement on subsonic axi-symmetric air ejector. Performances of the ejector with and without pulsations of primary flow are compared, measuring of characteristic pressures and mass flow rates are performed and ejector efficiency is evaluated. The pulsations of primary flow are produced by a synthetic jet generator, which is placed in the supply line of the primary flow just in front of the primary nozzle. The aim of the pulsation is to intensify the mixing process. In the article we present: Pressure measuring of pulsation on the mixing chamber wall, behind the mixing chamber and behind the diffuser measured by fast pressure transducers and results of hot wire anemometry measurement. It was found out that using of primary flow pulsations yields higher back pressure behind the ejector and higher efficiency. The processes in this ejector and influences of primary flow pulsations on the mixing processes are described.

Keywords: Air ejector, pulsation flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
14566 Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic

Authors: C. Nutphuang, S. Chirarattananon, V.D. Hien

Abstract:

In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.

Keywords: CFD program, natural ventilation, forcedconvection, heat transfer, air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
14565 Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers

Authors: Y. Galerkin, O. Solovieva

Abstract:

Parameters of flow are calculated in vaneless diffusers with relative width 0,014–0,10. Inlet angles of flow and similarity criteria were varied. There is information on flow separation, boundary layer development, configuration of streamlines. Polytrophic efficiency, loss coefficient and recovery coefficient are used to compare effectiveness of diffusers. The sample of optimization of narrow diffuser with conical walls is presented. Three wide diffusers with narrowing walls are compared. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb.

Keywords: Vaneless diffuser, relative width, flow angle, flow separation, loss coefficient, similarity criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
14564 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass

Authors: Ramy H. Mohammed

Abstract:

In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.

Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
14563 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage

Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing

Abstract:

The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.

Keywords: Lunar samples, gas disturbance, storage device, characteristic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
14562 The Effects of Rain and Overland Flow Powers on Agricultural Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

The purpose of this investigation is to relate the rain power and the overland flow power to soil erodibility to assess the effects of both parameters on soil erosion using variable rainfall intensity on remoulded agricultural soil. Six rainfall intensities were used to simulate the natural rainfall and are as follows: 12.4mm/h, 20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results have shown that the relationship between overland flow power and rain power is best represented by a linear function (R2=0.99). As regards the relationships between soil erodibility factor and rain and overland flow powers, the evolution of both parameters with the erodibility factor follow a polynomial function with high coefficient of determination. From their coefficients of determination (R2=0.95) for rain power and (R2=0.96) for overland flow power, we can conclude that the flow has more power to detach particles than rain. This could be explained by the fact that the presence of particles, already detached by rain and transported by the flow, give the flow more weight and then contribute to the detachment of particles by collision.

Keywords: Laboratory experiments, soil erosion, flow power, erodibility, rainfall intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
14561 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

Authors: Muhammad Amjad Sohail, Rizwan Ullah

Abstract:

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
14560 Experimental Investigations of a Modified Taylor-Couette Flow

Authors: A. Esmael, A. El Shrif

Abstract:

In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.

Keywords: Hydrodynamic Instability, Modified Taylor-Couette Flow, Turbulence, Taylor vortices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
14559 Studying the Effect of Froude Number and Densimetric Froude Number on Local Scours around Circular Bridge Piers

Authors: Md Abdullah Al Faruque

Abstract:

A very large percentage of bridge failures are attributed to scouring around bridge piers and this directly influences public safety. Experiments are carried out in a 12-m long rectangular open channel flume made of transparent tempered glass. A 300 mm thick bed made up of sand particles is leveled horizontally to create the test bed and a 50 mm hollow plastic cylinder is used as a model bridge pier. Tests are carried out with varying flow depths and velocities. Data points of various scour parameters such as scour depth, width, and length are collected based on different flow conditions and visual observations of changes in the stream bed downstream the bridge pier are also made as the scour progresses. Result shows that all three major flow characteristics (flow depth, Froude number and densimetric Froude number) have one way or other affect the scour profile.

Keywords: Bridge pier scour, densimetric Froude number, flow depth, Froude Number, sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
14558 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
14557 Acoustic and Flow Field Analysis of a Perforated Muffler Design

Authors: Zeynep Parlar, Şengül Ari, Rıfat Yilmaz, Erdem Özdemir, Arda Kahraman

Abstract:

New regulations and standards for noise emission increasingly compel the automotive firms to make some improvements about decreasing the engine noise. Nowadays, the perforated reactive mufflers which have an effective damping capability are specifically used for this purpose. New designs should be analyzed with respect to both acoustics and back pressure. In this study, a reactive perforated muffler is investigated numerically and experimentally. For an acoustical analysis, the transmission loss which is independent of sound source of the present cross flow, the perforated muffler was analyzed by COMSOL. To be able to validate the numerical results, transmission loss was measured experimentally. Back pressure was obtained based on the flow field analysis and was also compared with experimental results. Numerical results have an approximate error of 20% compared to experimental results.

Keywords: Back Pressure, Perforated Muffler, Transmission Loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8275
14556 Burning Rate Response of Solid Fuels in Laminar Boundary Layer

Authors: A. M. Tahsini

Abstract:

Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants.

Keywords: Extinction, Oscillation, Regression rate, Response, Transient burning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
14555 Modeling and Simulation of Axial Fan Using CFD

Authors: Hemant Kumawat

Abstract:

Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively low pressures. In general, they are low in cost and possess good efficiency, and can have blades of airfoil shape. Axial flow fans show good efficiencies, and can operate at high static pressures if such operation is necessary. Our objective is to model and analyze the flow through AXIAL FANS using CFD Software and draw inference from the obtained results, so as to get maximum efficiency. The performance of an axial fan was simulated using CFD and the effect of variation of different parameters such as the blade number, noise level, velocity, temperature and pressure distribution on the blade surface was studied. This paper aims to present a final 3D CAD model of axial flow fan. Adapting this model to the available components in the market, the first optimization was done. After this step, CFX flow solver is used to do the necessary numerical analyses on the aerodynamic performance of this model. This analysis results in a final optimization of the proposed 3D model which is presented in this article.

Keywords: ANSYS CFX, Axial Fan, Computational Fluid Dynamics (CFD), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11105
14554 Principal Component Analysis using Singular Value Decomposition of Microarray Data

Authors: Dong Hoon Lim

Abstract:

A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. Principal component analysis(PCA) has been widely used in multivariate data analysis to reduce the dimensionality of the data in order to simplify subsequent analysis and allow for summarization of the data in a parsimonious manner. PCA, which can be implemented via a singular value decomposition(SVD), is useful for analysis of microarray data. For application of PCA using SVD we use the DNA microarray data for the small round blue cell tumors(SRBCT) of childhood by Khan et al.(2001). To decide the number of components which account for sufficient amount of information we draw scree plot. Biplot, a graphic display associated with PCA, reveals important features that exhibit relationship between variables and also the relationship of variables with observations.

Keywords: Principal component analysis, singular value decomposition, microarray data, SRBCT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
14553 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: Direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
14552 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake

Abstract:

This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng- Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: Aspen Plus, Modelling, Plug Flow Reactor, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9329
14551 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation

Authors: Abhisek Sarkar, Abhimanyu Gaur

Abstract:

In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.

Keywords: Attractor, Bifurcation, Energy cascade, Energy spectra, Intermittence, Vortex stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
14550 Flow Properties of Commercial Infant Formula Powders

Authors: Maja Benkovic, Ingrid Bauman

Abstract:

The objective of this work was to investigate flow properties of powdered infant formula samples. Samples were purchased at a local pharmacy and differed in composition. Lactose free infant formula, gluten free infant formula and infant formulas containing dietary fibers and probiotics were tested and compared with a regular infant formula sample which did not contain any of these supplements. Particle size and bulk density were determined and their influence on flow properties was discussed. There were no significant differences in bulk densities of the samples, therefore the connection between flow properties and bulk density could not be determined. Lactose free infant formula showed flow properties different to standard supplement-free sample. Gluten free infant formula with addition of probiotic microorganisms and dietary fiber had the narrowest particle size distribution range and exhibited the best flow properties. All the other samples exhibited the same tendency of decreasing compaction coefficient with increasing flow speed, which means they all become freer flowing with higher flow speeds.

Keywords: flow properties, infant formula, powderedmaterial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
14549 Unsteady Reversed Stagnation-Point Flow over a Flat Plate

Authors: Vai Kuong Sin, Chon Kit Chio

Abstract:

This paper investigates the nature of the development of two-dimensional laminar flow of an incompressible fluid at the reversed stagnation-point. ". In this study, we revisit the problem of reversed stagnation-point flow over a flat plate. Proudman and Johnson (1962) first studied the flow and obtained an asymptotic solution by neglecting the viscous terms. This is no true in neglecting the viscous terms within the total flow field. In particular it is pointed out that for a plate impulsively accelerated from rest to a constant velocity V0 that a similarity solution to the self-similar ODE is obtained which is noteworthy completely analytical.

Keywords: reversed stagnation-point flow, similarity solutions, analytical solution, numerical solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
14548 Application of Load Transfer Technique for Distribution Power Flow Analysis

Authors: Udomsak Thongkrajay, Padej Pao-La-Or, Thanatchai Kulworawanichpong

Abstract:

Installation of power compensation equipment in some cases places additional buses into the system. Therefore, a total number of power flow equations and voltage unknowns increase due to additional locations of installed devices. In this circumstance, power flow calculation is more complicated. It may result in a computational convergence problem. This paper presents a power flow calculation by using Newton-Raphson iterative method together with the proposed load transfer technique. This concept is to eliminate additional buses by transferring installed loads at the new buses to existing two adjacent buses. Thus, the total number of power flow equations is not changed. The overall computational speed is expectedly shorter than that of solving the problem without applying the load transfer technique. A 15-bus test system is employed for test to evaluate the effectiveness of the proposed load transfer technique. As a result, the total number of iteration required and execution time is significantly reduced.

Keywords: Load transfer technique, Newton-Raphson power flow, ill-condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
14547 Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

Authors: Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adisorn Tuantranont, Erik L J Bohez

Abstract:

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

Keywords: Coupled multifield, finite element analysis, hollow silicon microneedle, transdermal drug delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
14546 An Efficient Method for Load−Flow Solution of Radial Distribution Networks

Authors: Smarajit Ghosh , Karma Sonam Sherpa

Abstract:

This paper reports a new and accurate method for load-flow solution of radial distribution networks with minimum data preparation. The node and branch numbering need not to be sequential like other available methods. The proposed method does not need sending-node, receiving-node and branch numbers if these are sequential. The proposed method uses the simple equation to compute the voltage magnitude and has the capability to handle composite load modelling. The proposed method uses the set of nodes of feeder, lateral(s) and sub lateral(s). The effectiveness of the proposed method is compared with other methods using two examples. The detailed load-flow results for different kind of load-modellings are also presented.

Keywords: Load−flow, Feeder, Lateral, Power, Voltage, Composite, Exponential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5654
14545 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111