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Abstract—This paper presents a multi population Differential
Evolution (DE) with adaptive mutation and local search for global
optimization, named AMMADE in order to better coordinate
the cooperation between the populations and the rational use of
resources. In AMMADE, the population is divided based on the
Euclidean distance sorting method at each generation to appropriately
coordinate the cooperation between subpopulations and the usage of
resources, such that the best-performed subpopulation will get more
computing resources in the next generation. Further, an adaptive local
search strategy is employed on the best-performed subpopulation to
achieve a balanced search. The proposed algorithm has been tested
by solving optimization problems taken from CEC2014 benchmark
problems. Experimental results show that our algorithm can achieve
a competitive or better result than related methods. The results
also confirm the significance of devised strategies in the proposed
algorithm.
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I. INTRODUCTION

DE is a population-based stochastic search technique.

It uses mutation, crossover, and selection operators at

each generation to move its population toward the global

optimum [1]. Due to its simplicity and efficiency, DE

has been successfully applied to many fields. Generally,

the performance of DE relies on recombination strategies,

parameters as well as the population structure [2]. Typically,

different problems require different mutation strategies

and parameter settings [3]. To appropriately use mutation

strategies, a common approach is to adaptively control the

mutation strategies and parameters [4].

Many DE variants with adaptive mutation strategy and/or

parameter control have been proposed in literature. For

example, JADE [5] employed a parameter adaptation strategy

along with DE/current-to-pbest mutation strategy to generate

new solutions. In EPSDE [4], a pool of distinct mutation

and crossover strategies along with a pool of values for each

control parameter coexists throughout the evolution process

and competes to produce offspring. CoDE [6] is a DE variant

with composite trial vector generation strategies and control

parameters, in which three trial vector generation strategies
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namely DE/rand/1, DE/rand/2 and DE/current-to-rand/1 are

employed. SaDE [7] used trial vector generation strategy and

parameter adaptation strategy to match different phases of

search process. The mutation strategies in the above algorithms

are employed on a single population and each mutation

strategy is assigned with the same computational resources,

which may lead to a waste of resources. Individual mutation

strategies at each stage may have a different performance

and a good strategy should be assigned with more computing

resources [8].

In recent years, the integration of multiple mutation

strategies to multiple subpopulations has also attracted

attention. For example, MPEDE [9], which is a

multi-population based DE, realized a dynamic ensemble of

multiple mutation strategies. In MPEDE, the authors tried to

divide the population into a larger reward sub-population and

three smaller equal indicator subpopulations. At the beginning

of evolutionary process, three indicator subpopulations are

assigned to three mutation strategies, and the reward

subpopulation is randomly assigned to one of the three

mutation strategies. After a certain number of generations, the

reward subpopulation is assigned to the best mutation strategy

[8]. Three mutation strategies, including DE/current-to-pbest/1

with an archive, DE/current-to-rand/1, and DE/rand/1 are

employed in MPEDE. DE/current-to-pbest/1 with an archive

is very competitive in solving complex optimization problems,

especially those with uni-modal and multimodal landscapes,

DE/current-to-rand/1 without crossover operation is a

rotation-invariant and useful in solving rotated problem, while

the DE/rand/1 strategy has a strong exploration capability

and can effectively maintain the diversity of populations [5],

[8], [9]. The control parameters of MPEDE are based on

the scheme proposed in JADE. However, in MPEDE, most

computing resources are allocated to the best strategy, while

the mutation strategy employed by the individual is random,

which may not be effective.

To improve the efficiency of DE, memetic DE [10] has been

proposed. For example, Rogalsky and Derksen [11] combined

downhill simplex (DS) with DE in order to accelerate

convergence. Molina et al. [12] proposed a memetic DE called

SHADE-ILS for large-scale global optimization, in which

SHADE [13] and ILS [14] are combined. These methods are

generally based on single local search on a single population,

or use a single local search in multi population, which may

have difficulty to balance exploration and exploitation.

In this paper, two strategies have been proposed based on
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MPEDE to address global optimization problems. Different

from the grouping of MPEDE, the reward population is

removed, and the entire population is divided into three

subpopulations of the same size. According to the performance

of the three subpopulations at each generation, a main

subpopulation is obtained. The main population will be

assigned with a more computing resources at each generation.

At the same time, a sorting method based on Euclidean

distance is adopted to partition the population. At each

generation, individuals will adopt a suitable mutation strategy

to ensure a reasonable utilization of resources. Finally, in order

to balance exploration and exploitation, adaptive local search

is proposed and applied on the main subpopulation. Taking

into account the limitation of computing resources, when the

diversity of the population is small, the Cauchy local search is

used for the outstanding individuals in the main subpopulation,

otherwise the Gaussian local search is used to improve the best

individual of the main subpopulation. Experiments show that

the performance of AMMADE is competitive or better than

JADE [5], SaDE [7], EPSDE [4], CoDE [6] and MPEDE [9].

The rest of this paper is arranged as follows. In Section

II, the related work is briefly reviewed. AMMADE algorithm

is described in detail in Section III. Section IV gives the

comparison results with other algorithms. Finally, Section V

concludes this paper.

II. RELATED WORK

The DE algorithm initializes the population of NP
candidate solutions randomly, Xi={xi

1, . . . , xi
D}

i = 1, ..., NP and explores the search space by sampling

on the D-dimensional space. After population initialization,

the DE algorithm will undergo a generational evolution,

which consists of three operations: mutation, crossover and

selection.

The mutation strategy has a great impact on the performance

of the algorithm, and the DE algorithm generates a new

solution through the corresponding mutation strategy in each

generation to find the best fitness value. The commonly used

mutation strategies in the past few years are as follows:

1) DE/best/1

Vi =Xbest + Fi · (Xr2 −Xr1) (1)

2) DE/rand/1

Vi =Xr3 + Fi · (Xr2 −Xr1) (2)

3) DE/current-to-pbest/1

Vi =Xi + Fi · (Xp
best −Xi) + Fi · (Xr2 −Xr1) (3)

4) DE/current-to-rand/1

Vi =Xi + Fi · (Xr3 −Xi) + Fi · (Xr2 −Xr1) (4)

where Xbest denotes the best parent vector in the current

population, Xp
best is randomly chosen from the top 100∗p%

individuals in the current population, Fi commonly known

as the scaling factor to control the rate of evolution of

the population. The indices r1,r2,r3 are randomly generated

anew for each mutant vector and are mutually exclusive

(r1 �= r2 �= r3).
After the mutation, DE then undergoes a crossover operation

to generate a trial vector Ui. Commonly used crossover

strategies are binomial crossover and exponential crossover.

The binomial crossover is defined as follows.

Ui
j =

{
Vi

j , if rand[0, 1) ≤ Cr or j = jrand,

Xi
j , otherwise.

(5)

where Cr ∈ (0, 1] is crossover probability, which controls the

number of decision variable values. jrand is a random number

to ensure that at least one number is always selected from the

mutant vector Vi.
After the mutation and crossover operation, election

operation will be employed. The selection operation is

a process of elimination and screening of old and new

individuals (Vi and Ui) based on fitness values. The selection

operation is defined as:

Xi =

{
Ui, if f(Ui) ≤ f(Xi)

Xi, otherwise.
(6)

where f(Ui) and f(Xi) are the fitness values of Ui and Xi,

respectively.

III. PROPOSED ALGORITHM

In this section, we present the detailed process and strategy

of our algorithm. First is initializing a population randomly,

calculating the fitness value of each individual and the

Euclidean distance to the best individual. Unlike MPEDE [9],

we changed the way of randomly allocating resources, sorted

according to the Euclidean distance to the best individual, and

then divided the population into three subpopulations of the

same size. Then is the employing different mutation strategies

for the three subpopulations, that is, using DE/rand/1 for

the top ranking subpopulation, DE/current-to-rand/1 for the

medium ranking subpopulation, and DE/current-to-pbest/1 for

the worst ranking population. The three subpopulations share

the best individual information according to the fitness value.

The three sub-populations will run in parallel, and the most

potential subpopulation Pmain is obtained according to the

indicators. An adaptive local search operation is performed

on Pmain, and the main population Pmain will get more

computing resources through the population migration strategy

in the next generation. Finally, when the computing resource

budget is finished, output is the final result. The diagram of

MAs and the overview of the proposed algorithm are shown

in Fig. 1 and Algorithm 1, respectively.
The left part of Fig. 1 represents three subpopulations

with different mutation/crossover operators. The three

subpopulations start with the same population size and

then dynamically change according to the performance of

each subpopulation. The middle part represents the main

population, and the right part represents two different local

search methods.
In the following subsections, we will describe the adaptive

mutation operator strategy based on multi-populations in

Section III A, and the adaptive local search strategy in Section

III B.
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Fig. 1 Algorithm Structure Diagram

A. Adaptive Mutation Operator Strategy Based on
Multi-Populations

The individual uses different mutation strategies at each

stage according to the ranking of the Euclidean distance, and

adopt a new resource allocation method, a better mutation

strategy will get more computing resources. The specific

operation is as follows.

Firstly, the entire population is divided into three equal-sized

sub-populations according to the individual’s Euclidean

distance ranking in AMMADE. The top subpopulations have

less diversity, and mutation strategy DE/rand/1 can be used

to increase the diversity. The worst-ranked subpopulation

has enough diversity, but the convergence speed is slow,

and mutation strategy DE/current-to-pbest/1 will be used to

improve the convergence speed. The top 1/3 uses strategy

DE/rand/1, the middle one uses strategy DE/current-to-rand/1,

and the bottom 1/3 one uses strategy of DE/current-to-pbest/1.

During the run of three sub-populations, the most potential

subpopulation is formed according to index SQFp. We reorder

the three subpopulations according to Euclidean distance, and

migrate the top pm individuals of the two populations with

poor potential to the main subpopulation Pmain. The index

SQFp is used to judge the potential of each subgroup and is

defined as follows.

Considering the diversity of each sub population, the

proportion of each sub population to the diversity of all

subpopulations DSp ∈ [0, 1] is calculated according to (7).

DSp =

1
NPp

(
NPp∑
i=1

dis(
−−→
Pp,i −−−−−→

Pp,best))

3∑
p

1
NPp

(
NPp∑
i=1

dis(
−−→
Pp,i −−−−−→

Pp,best))

, ∀p = 1, 2, 3 (7)

where dis(
−−→
Pp,i −−−−−→

Pp,best) is the Euclidean distance from each

individual to the best individual of Pmain. Considering the

potential of each subpopulation from the best fitness value:

QF
p
=

fitnessPp,best

3∑
p=1

fitnessPp,best

, ∀p = 1, 2, 3 (8)

Considering the quality and diversity of solutions, the larger

the value of IFBp, the better the potential to find the optimal

value representing the sub population.

IFBp = (1−QFp)+DSp ∗ (nfes/max nfes), ∀p = 1, 2, 3
(9)

Finally, considering the dynamic situation of optimization,

the index SQFp is finally based on the performance of the

last three generations, which is shown in (10):

SQFp =

⎧⎨
⎩

IFBp,g, g = 1

1
2 ∗

gen∑
g=gen−1

IFBp,g, g ≥ 2 , ∀p = 1, 2, 3 (10)

where gen is the number of current running generation.

B. Adaptive Local Search Strategy

It has been well established that, in order to maintain the

balance between exploration and exploitation, we should pay

more attention to exploration at the early stage of evolution.

While at the later stage of evolution, the algorithm should pay

more attention to exploitation, thus accurately identifying the

optimum [15]. We perform a local search operation on the

top 2% individuals in the most potential subpopulation, when

the index of population diversity LST is 1, the Cauchy local

search method is used to enhance the population diversity,

otherwise, the Gaussian local search is performed to further

optimize the solution. The Gaussian local search and Cauchy

local search are shown in (11) and (12), respectively.

xnew = Normrnd(xold, e
−(nfes/max nfes)2) (11)

As the iterative process e−(nfes/max nfes)2 becomes

smaller, the variation range of xnew changes is reduced, and

the exploitation is more focused.

Xi,new = Cauchy(Xi,old, e
−1+(nfes/max nfes)2) (12)

As the iterative process e−1+(nfes/max nfes)2 becomes

larger, the variation range of Xi,new expands, and the diversity

of the main population can increase, which is conducive to

exploration.

The change rate of the average value of the solution of the

most potential subpopulation Pmain in the last five generations

DivRgen, which is in (13), will gradually become smaller.

DivRgen =
abs(Divgen-Divgen−5)

Divgen−5
(13)

where Divgen is the diversity of the sub population Pmain,

which is shown in (14):

Divgen =
1

NPgen
(

NPgen∑
i=1

dis(
−−−→
Pgen,i −−−−−−→

Pgen,best)) (14)

The index LST is taking into account the limitation of

computing resources and the reduction of population diversity

in the later period. When the LST is 1, it means that the

diversity of the population is low, and the Cauchy local search

needs to be added.

LST =

{
1, e−DivR > e−(nfes/max nfes)3

0, otherwise
(15)
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Algorithm 1 AMMADE algorithm.

1) Set the initial global parameters gen=0, population size

popsize and population mobility pm.

2) Calculate the Euclidean distance from each individual to

the best individual and sort it order.

3) Set the initial parameters of the subpopulation

mFi,mCRi, NPi=popsize/3, i = 1, 2, 3
4) According to the sorting, divide three sub-populations

Pi and use different mutation strategies,P1 (”DE/rand

/1” for the top ranking), P2 (”DE/current-to-rand/1” for

the general ranking) and P3 (”DE/current-to-pbest/1” for

the worst ranking)

5) Repeat the following process until a predefined

termination condition is met.

a) The three subpopulations Pi evolve in parallel

with different mutationmi operators and return to

Pi,fitnessPi,NPi.

b) Get the scorei according to index SQFp, and

the population with the highest score is the most

potential population Pmain.

c) Adaptive Local search for Pmain,which is shown

in Algorithm 2.

d) Implement population migration strategy,which is

shown in Algorithm 2.

6) Output the solution with the best fitness in the terminal

population.

Algorithm 2 Adaptive Local search for Pmain.

1) if LST == 1

a) Sort Pmain according to fitness value order.

b) Perform a local Cauchy search on the top 2% to

increase the diversity of Pmain.

c) Replace the old individuals with new outstanding

individuals.

2) else if
a) Perform a Gaussian local search on the best

individual of Pmain .

b) Replace the old individuals with new outstanding

individuals.

3) end if

IV. EXPERIMENTS

In this section, extensive experiments have been carried out

to evaluate the AMMADE’s performance. First, in Section

IV A, the parameter setting of algorithm and function is

mentioned. In Section IV B, we explore the effectiveness of

the proposed strategy. Finally, we compare the performance of

our method with related methods.

All algorithms are run with a computer of Intel Core i78700

3.20 GHz CPU, 16 GB RAM. We run each algorithm 51

times on each test problem and record the means (mean) and

standard deviations (std) of function values among these runs.

On each problem, the best mean fitness values among the

algorithms to be compared are marked with boldface in the

TABLE I
SUMMARY OF THE PARAMETER VALUES USED IN THE PROPOSED

ALGORITHM

Parameters popsize mFi mCRi p pm

Value 210 0.5 0.5 0.05 0.05

TABLE II
COMPARISON OF RESULTS OF MPEDE, AMMADE 1 AND AMMADE IN

TERMS OF MEAN (STD) ON THE CEC2014 TEST FUNCTIONS WITH D = 30

MPEDE AMMADE 1 AMMADE

Functions Mean (Std) Mean (Std) Mean (Std)

F1 1.08E-03(7.70E-03) 6.96E-03(4.88E-02) 2.48E-06(1.10E-05)

F2 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F3 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F4 8.30E-04(5.93E-03) 4.29E-07(3.06E-06) 1.56E-11(7.04E-11)

F5 2.04E+01(4.22E-02) 2.03E+01(4.75E-02) 2.03E+01(6.46E-02)

F6 9.00E-01(1.09E+00) 2.62E+00(1.64E+00) 1.77E+00(1.53E+00)

F7 3.38E-04(1.71E-03) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F8 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F9 2.82E+01(7.30E+00) 2.44E+01(6.20E+00) 2.37E+01(5.07E+00)

F10 1.30E+00(8.26E-01) 5.28E-02(5.07E-02) 6.20E-02(3.72E-02)

F11 2.39E+03(4.62E+02) 1.97E+03(4.07E+02) 1.93E+03(4.07E+02)

F12 5.22E-01(9.50E-02) 4.05E-01(8.49E-02) 4.24E-01(8.00E-02)

F13 2.10E-01(7.42E-02) 2.19E-01(3.59E-02) 2.08E-01(3.22E-02)

F14 2.37E-01(3.20E-02) 2.25E-01(2.59E-02) 2.22E-01(2.66E-02)

F15 4.03E+00(8.44E-01) 3.17E+00(7.13E-01) 3.36E+00(7.79E-01)

F16 9.97E+00(4.38E-01) 9.76E+00(4.19E-01) 9.66E+00(4.54E-01)

F17 2.17E+02(1.55E+02) 3.10E+02(1.68E+02) 2.80E+02(1.71E+02)

F18 1.44E+01(5.26E+00) 1.27E+01(5.13E+00) 1.24E+01(4.04E+00)

F19 3.81E+00(5.32E-01) 3.84E+00(5.82E-01) 3.86E+00(5.47E-01)

F20 8.66E+00(2.77E+00) 1.07E+01(4.22E+00) 1.03E+01(3.25E+00)

F21 1.02E+02(1.06E+02) 1.44E+02(1.43E+02) 1.48E+02(9.46E+01)

F22 8.93E+01(6.37E+01) 9.93E+01(7.16E+01) 8.12E+01(6.01E+01)

F23 3.15E+02(4.59E-13) 3.15E+02(3.21E-12) 3.15E+02(3.21E-12)

F24 2.25E+02(3.37E+00) 2.24E+02(6.65E-01) 2.24E+02(5.87E-01)

F25 2.00E+02(2.30E-03) 2.03E+02(2.99E-01) 2.03E+02(4.52E-01)

F26 1.00E+02(2.77E-02) 1.00E+02(2.98E-02) 1.00E+02(3.25E-02)

F27 3.55E+02(4.89E+01) 3.76E+02(4.30E+01) 3.66E+02(4.55E+01)

F28 8.35E+02(3.77E+01) 7.92E+02(2.84E+01) 7.95E+02(3.00E+01)

F29 6.84E+02(1.33E+02) 6.97E+02(9.94E+01) 6.73E+02(1.51E+02)

F30 7.62E+02(3.87E+02) 6.92E+02(2.16E+02) 6.75E+02(3.58E+02)

13/11/6 4/25/1 +/-/=

results.

A. Experimental Settings

To verify the performance of proposed algorithm, we

conduct numerical experiments on the CEC2014 test suites.

The data sets of CEC2014 can be categorized into four

groups, F1-F3 are uni-modal functions, F4-F16 are the simple

multi-modal functions, F17-F22 are the hybrid functions and

F23-F30 are composition functions. For all problems, the

search space is [-100,100]D. The dimensions of benchmark

functions are D = 30 and 100. The values of the optimal
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TABLE III
COMPARISON OF RESULTS IN TERMS OF MEAN (STD) ON THE CEC2014 TEST FUNCTIONS WITH D = 30

JADE CoDE SaDE EPSDE MPEDE AMMADE

Functions Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

F1 2.81E+03(3.07E+03) 2.23E+04(1.75E+04) 3.66E+05(2.34E+05) 8.53E+04(5.60E+05) 1.08E-03(7.70E-03) 2.48E-06(1.10E-05)

F2 0.00E+00(0.00E+00) 5.76E+00(2.44E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F3 1.13E-06(7.51E-06) 1.49E-04(6.86E-05) 2.70E+01(6.12E+01) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F4 0.00E+00(0.00E+00) 2.72E+01(2.67E+01) 4.04E+01(3.78E+01) 3.73E+00(2.24E+00) 8.30E-04(5.93E-03) 1.56E-11(7.04E-11)

F5 2.03E+01(3.53E-02) 2.06E+01(4.33E-02) 2.05E+01(5.08E-02) 2.04E+01(4.04E-02) 2.04E+01(5.41E-02) 2.03E+01(6.46E-02)

F6 1.00E+01(2.12E+00) 2.17E+01(1.84E+00) 5.11E+00(2.01E+00) 1.88E+01(1.58E+00) 9.00E-01(1.09E+00) 1.77E+00(1.53E+00)

F7 1.45E-04(1.04E-03) 5.65E-04(3.08E-03) 7.13E-03(1.18E-02) 1.45E-03(4.88E-03) 3.38E-04(1.71E-03) 0.00E+00(0.00E+00)

F8 0.00E+00(0.00E+00) 1.86E+01(1.38E+00) 1.95E-02(1.39E-01) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F9 2.69E+01(3.59E+00) 1.38E+02(9.84E+00) 4.20E+01(1.03E+01) 4.36E+01(5.80E+00) 2.82E+01(7.30E+00) 2.14E+01(4.81E+00)

F10 5.72E-03(1.18E-02) 7.73E+02(8.33E+01) 2.67E-01(4.23E-01) 2.49E-01(2.33E-01) 1.30E+00(8.26E-01) 6.20E-02(3.72E-02)

F11 1.65E+03(2.49E+02) 4.82E+03(2.57E+02) 3.22E+03(5.85E+02) 3.53E+03(3.62E+02) 2.39E+03(4.62E+02) 1.93E+03(4.07E+02)

F12 2.58E-01(3.33E-02) 1.01E+00(1.56E-01) 7.68E-01(9.97E-02) 5.01E-01(5.48E-02) 5.22E-01(9.50E-02) 4.24E-01(8.00E-02)

F13 2.06E-01(2.96E-02) 4.49E-01(5.15E-02) 2.57E-01(4.09E-02) 2.44E-01(3.62E-02) 2.10E-01(7.42E-02) 2.08E-01(3.22E-02)

F14 2.19E-01(3.42E-02) 2.87E-01(3.77E-02) 2.29E-01(3.62E-02) 2.92E-01(7.42E-02) 2.37E-01(3.20E-02) 2.22E-01(2.66E-02)

F15 3.24E+00(3.44E-01) 1.36E+01(9.60E-01) 4.83E+00(1.79E+00) 5.39E+00(7.94E-01) 4.03E+00(8.44E-01) 3.36E+00(7.79E-01)

F16 9.38E+00(4.33E-01) 1.16E+01(2.47E-01) 1.10E+01(3.11E-01) 1.11E+01(3.45E-01) 9.97E+00(4.38E-01) 9.66E+00(4.54E-01)

F17 1.62E+04(1.08E+05) 1.47E+03(2.25E+02) 1.27E+04(1.10E+04) 4.27E+04(4.08E+04) 2.17E+02(1.55E+02) 2.80E+02(1.71E+02)

F18 6.96E+01(3.18E+01) 4.96E+01(5.63E+00) 4.38E+02(6.73E+02) 2.24E+02(4.14E+02) 1.44E+01(5.26E+00) 1.24E+01(4.04E+00)

F19 4.34E+00(6.88E-01) 7.12E+00(8.33E-01) 5.33E+00(8.29E+00) 1.33E+01(1.16E+00) 3.81E+00(5.32E-01) 3.86E+00(5.47E-01)

F20 2.39E+03(2.61E+03) 3.06E+01(3.88E+00) 1.37E+02(1.90E+02) 5.61E+01(7.03E+01) 8.66E+00(2.77E+00) 1.03E+01(3.25E+00)

F21 2.92E+03(1.89E+04) 7.19E+02(1.28E+02) 3.73E+03(5.32E+03) 8.04E+03(9.02E+03) 1.02E+02(1.06E+02) 1.48E+02(9.46E+01)

F22 1.59E+02(7.08E+01) 1.20E+02(5.20E+01) 1.37E+02(5.70E+01) 2.25E+02(9.13E+01) 8.93E+01(6.37E+01) 8.12E+01(6.01E+01)

F23 3.15E+02(3.21E-12) 3.15E+02(6.02E-07) 3.15E+02(2.76E-12) 3.14E+02(1.38E-12) 3.15E+02(4.59E-13) 3.15E+02(3.21E-12)

F24 2.25E+02(1.14E+00) 2.26E+02(8.06E-01) 2.26E+02(2.51E+00) 2.29E+02(6.06E+00) 2.25E+02(3.37E+00) 2.24E+02(5.87E-01)

F25 2.05E+02(1.89E+00) 2.00E+02(7.28E-02) 2.08E+02(3.17E+00) 2.00E+02(1.73E-01) 2.00E+02(2.30E-03) 2.03E+02(4.52E-01)

F26 1.00E+02(3.50E-02) 1.00E+02(4.68E-02) 1.02E+02(1.40E+01) 1.00E+02(4.27E-02) 1.00E+02(2.77E-02) 1.00E+02(3.25E-02)

F27 3.39E+02(4.75E+01) 4.01E+02(2.22E-01) 4.04E+02(3.19E+01) 8.44E+02(9.13E+01) 3.55E+02(4.89E+01) 3.66E+02(4.55E+01)

F28 7.94E+02(3.56E+01) 9.39E+02(2.39E+01) 8.74E+02(2.62E+01) 3.96E+02(1.29E+01) 8.35E+02(3.77E+01) 7.95E+02(3.00E+01)

F29 7.66E+02(2.14E+02) 5.83E+02(2.03E+02) 1.08E+03(2.20E+02) 2.14E+02(1.31E+00) 6.84E+02(1.33E+02) 6.73E+02(1.51E+02)

F30 1.29E+03(3.69E+02) 1.15E+03(1.31E+02) 1.51E+03(5.32E+02) 5.36E+02(1.38E+02) 7.62E+02(3.87E+02) 6.75E+02(3.58E+02)

14/9/7 29/0/1 25/4/1 21/4/5 13/11/6 +/-/=

solutions are known in advance for all benchmark functions.

The maximum number of objective function evaluations is

D×10,000. The parameter settings of AMMADE are listed

in Table I, and the control parameters of other algorithms are

set as suggested in the corresponding papers.

B. Exploring the Proposed Strategies

In this section, we explore the proposed strategies by

comparing AMMADE with MPEDE and its variant: MPEDE,

in which random sorting mutation strategy and reward

population strategy are used. AMMADE 1 uses adaptive

mutation operator strategy based on multi-population and

AMMADE uses adaptive mutation operator strategy based on

multi-population and adaptive local search strategy.

The Nonparametric Wilcoxon rank-sum test at a 0.05

significance level has been performed between AMMADE and

each algorithm to be compared on each benchmark function.

The sign ‘+’ in the results indicates that the performance

of AMMADE is significantly better than the corresponding

algorithm, ‘-’ vice versa and ‘=’ denotes there is no significant

difference between the performance.

The results (error values f − f∗) on 30 dimensions are

shown in Table II, in which f* is the best fitness value. From

the results, we can see that among the 30 benchmark functions,

AMMADE achieves the best mean values on 23 functions. The

AMMADE results are significantly better than the other two

algorithms. It can be seen from the results that the strategies

proposed are effective.

C. Comparisons with Related Algorithms

In this section, we compared AMMADE to the following

five DE variants:
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TABLE IV
COMPARISON OF RESULTS IN TERMS OF MEAN (STD) ON THE CEC2014 TEST FUNCTIONS WITH D = 100

JADE CoDE SaDE EPSDE MPEDE AMMADE

Functions Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

F1 1.82E+05(5.94E+04) 7.04E+06(2.01E+06) 6.84E+06(1.91E+06) 3.19E+05(1.21E+05) 2.67E+05(1.05E+05) 2.92E+05(1.14E+05)

F2 3.80E-03(1.05E-02) 1.68E+03(9.97E+02) 2.99E+04(6.90E+03) 4.36E+03(2.09E+04) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

F3 5.08E+03(4.66E+03) 6.33E+01(6.83E+01) 8.94E+01(9.74E+01) 1.40E-02(4.55E-02) 7.23E+02(8.01E+02) 9.97E+02(1.03E+03)

F4 1.38E+02(4.75E+01) 1.68E+02(2.77E+01) 3.80E+02(3.66E+01) 1.41E+02(4.35E+01) 9.46E+01(5.73E+01) 8.25E+01(5.79E+01)

F5 2.04E+01(1.40E-01) 2.12E+01(2.78E-02) 2.10E+01(2.79E-02) 2.11E+01(4.77E-02) 2.08E+01(8.48E-02) 2.07E+01(9.86E-02)

F6 4.65E+01(1.46E+01) 1.72E+01(4.35E+00) 8.92E+01(2.73E+01) 1.31E+02(4.40E+00) 4.32E+01(4.81E+00) 4.34E+01(7.02E+00)

F7 4.29E-03(9.45E-03) 3.31E-07(2.31E-07) 6.39E-02(2.53E-02) 4.78E-03(8.88E-03) 1.74E-03(4.73E-03) 1.59E-03(4.48E-03)

F8 0.00E+00(0.00E+00) 3.41E+02(1.64E+01) 2.93E+02(1.05E+01) 9.12E+01(1.39E-01) 2.15E-01(5.38E-01) 5.07E-01(1.17E+00)

F9 1.56E+02(1.88E+01) 4.81E+02(1.83E+02) 7.43E+02(2.06E+01) 6.43E+02(4.47E+01) 1.56E+02(2.15E+01) 1.59E+02(2.52E+01)

F10 1.04E-02(7.14E-03) 1.22E+04(6.22E+02) 1.06E+04(4.33E+02) 1.03E+04(1.94E+03) 7.04E-01(5.02E-01) 3.37E+00(1.87E+00)

F11 1.07E+04(5.05E+02) 2.65E+04(7.20E+02) 2.37E+04(4.71E+02) 2.67E+04(1.27E+03) 1.13E+04(1.11E+03) 1.12E+04(9.75E+02)

F12 3.35E-01(2.53E-02) 2.68E+00(1.46E-01) 1.91E+00(1.24E-01) 1.96E+00(1.67E-01) 7.72E-01(1.64E-01) 4.51E-01(1.54E-01)

F13 4.07E-01(4.56E-02) 6.00E-01(4.58E-02) 4.52E-01(2.48E-02) 4.80E-01(5.83E-02) 3.67E-01(3.84E-02) 3.66E-01(3.92E-02)

F14 3.08E-01(2.25E-02) 3.55E-01(2.41E-02) 3.09E-01(1.26E-02) 3.34E-01(3.16E-02) 3.02E-01(2.16E-02) 3.01E-01(2.47E-02)

F15 3.57E+01(5.73E+00) 6.67E+01(3.42E+00) 7.14E+01(5.23E+00) 9.15E+01(1.44E+01) 1.76E+01(2.78E+00) 1.81E+01(3.59E+00)

F16 3.99E+01(5.92E-01) 4.57E+01(2.87E-01) 4.44E+01(3.03E-01) 4.59E+01(5.46E-01) 4.04E+01(6.95E-01) 3.94E+01(1.09E+00)

F17 2.50E+04(8.01E+03) 2.97E+05(1.40E+05) 1.40E+04(5.01E+03) 4.48E+06(8.83E+06) 2.15E+04(1.04E+04) 2.66E+04(9.90E+03)

F18 1.02E+03(9.35E+02) 5.11E+02(5.34E+02) 4.24E+02(2.87E+02) 3.93E+03(5.28E+03) 2.84E+02(4.22E+01) 2.81E+02(8.76E+01)

F19 9.44E+01(2.11E+01) 9.47E+01(1.30E+00) 7.48E+01(2.36E+01) 5.56E+01(2.53E+01) 9.33E+01(2.15E+01) 9.63E+01(8.44E+00)

F20 5.85E+03(1.27E+04) 2.69E+02(1.12E+02) 2.62E+02(5.56E+01) 1.43E+03(4.50E+03) 4.91E+02(1.52E+02) 5.97E+02(3.05E+02)

F21 7.87E+03(3.70E+03) 7.53E+04(4.61E+04) 2.88E+03(1.23E+03) 3.62E+05(2.29E+05) 4.84E+03(2.43E+03) 6.91E+03(4.09E+03)

F22 1.53E+03(2.28E+02) 2.01E+03(5.13E+02) 2.63E+03(1.91E+02) 2.16E+03(3.67E+02) 1.70E+03(4.20E+02) 1.64E+03(4.32E+02)

F23 3.48E+02(1.96E-11) 3.48E+02(4.14E-07) 3.48E+02(1.03E-01) 3.45E+02(9.19E-13) 3.48E+02(0.00E+00) 3.48E+02(9.19E-13)

F24 3.97E+02(4.86E+00) 3.68E+02(3.26E+00) 3.71E+02(3.38E+00) 4.07E+02(8.30E+00) 3.96E+02(5.43E+00) 3.91E+02(4.40E+00)

F25 2.69E+02(7.65E+00) 2.03E+02(7.96E-01) 2.00E+02(6.74E-04) 2.59E+02(3.31E+01) 2.15E+02(2.12E+01) 2.02E+02(8.49E+00)

F26 2.00E+02(1.89E-02) 1.92E+02(2.70E+01) 2.00E+02(1.31E-02) 1.40E+02(5.04E+01) 1.98E+02(1.40E+01) 1.98E+02(1.40E+01)

F27 1.12E+03(1.29E+02) 4.79E+02(5.65E+01) 7.89E+02(5.68E+01) 3.76E+03(6.07E+01) 1.14E+03(1.12E+02) 9.54E+02(1.17E+02)

F28 2.39E+03(2.73E+02) 2.69E+03(2.58E+02) 8.80E+03(9.07E+02) 8.68E+02(2.79E+02) 2.31E+03(2.60E+02) 2.43E+03(4.32E+02)

F29 1.37E+03(8.84E+01) 1.97E+03(1.45E+02) 2.06E+03(2.22E+02) 2.64E+02(2.56E+01) 1.05E+03(2.22E+02) 1.22E+03(2.18E+02)

F30 8.42E+03(1.19E+03) 5.49E+03(1.16E+03) 6.79E+03(1.62E+03) 2.60E+03(3.81E+02) 7.08E+03(1.46E+03) 7.13E+03(1.10E+03)

14/9/7 22/1/7 21/2/7 21/2/7 8/17/5 +/-/=

1) JADE [5]: DE with adaptive control parameters and

optional external archive;

2) CoDE [6]: DE with composite trial vector generation

strategies and control parameters;

3) SaDE [7]: DE with strategy adaptation;

4) EPSDE [4]: DE with ensemble of parameters and

mutation strategies;

5) MPEDE [9]: DE with multi-population based ensemble

of mutation strategies.

Tables III and IV show the comparison results (error values

f − f∗) of the six algorithms. By analyzing the experimental

results from 30D, conclusions are given as follows.

Firstly, for uni-modal functions F1–F3, MPEDE shows the

best performance on F1, and AMMADE is also competitive

compared to other algorithms on F1. For F2, several related

algorithms except CoDE can find the optimal value. For

F3, only EPSDE, MPEDE and AMMADE can find the

optimal value. Secondly, for basic multi-modal benchmark

functions F4-F16, JADE performed the best, achieving the

best mean fitness on 11 functions (F4-F5, F7-F8, F10-F16).

AMMADE’s performance is also quite competitive, with

excellent performance on 7 functions (F5, F7-F9, F13-F15).

Thirdly, for the hybrid functions F17-F22, the best performer is

MPEDE, which has the best mean fitness on 5 functions (F17,

F19-F22). AMMADE performs well on 4 functions (F17-F19,

F23). This can reflect that AMMADE is also competitive

for hybrid functions. Finally, for the complex composition

functions F23-F30, EPSDE achieves the best results, with

excellent performance on 5 functions (F23, F25, F28-F30).

AMMADE, MPEDE and JADE perform well on 2 functions

(F24, F26), one function (F26) and two functions (F26-F27),

respectively. Based on the experimental results and analysis

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:8, 2022 

278International Scholarly and Scientific Research & Innovation 16(8) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
8,

 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
61

1.
pd

f



on the CEC2014 test suit, we can see that AMMADE is

competitive on various functions with related algorithms.

Algorithm 3 Implement population migration strategy.

1) Calculate and sort the Euclidean distance from each

individual to the best individual.

2) Re-divide sub-populations according to sorting

3) if P1 == Pmain

a) Migrate the top pm individuals from P3 to P1.

b) Migrate the top pm individuals from P2 to P1.

4) else if P2 == Pmain

a) Migrate the top pm individuals from P3 to P2.

b) Migrate the top pm individuals from P1 to P2.

5) else if P3 == Pmain

a) Migrate the top pm individuals from P2 to P3.

b) Migrate the top pm individuals from P1 to P3.

6) end if
7) Sort according to fitness value, replace the best

individuals of the three subpopulations with the best

individuals of the entire population

8) update Pi,fitnessPi,NPi.

V. CONCLUSIONS

In this paper, we presented a multi population based

DE with adaptive mutation and local search for global

optimization. In the proposed method, a grouping and sorting

method is used to partition the population and the individual in

different subpopulation will use different mutation strategies

at each stage according to the ranking of Euclidean distance.

Secondly, a resource allocation method is proposed such that

a better mutation strategy will get more computing resources.

In addition, an adaptive local search strategy is proposed, in

which different local search strategies will be dynamically

employed to improve the solution at different stages. The

experimental results clearly show the merits of the proposed

strategies and the resulting method could outperform the

related methods to be compared.
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