Search results for: Clay brick
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 220

Search results for: Clay brick

100 Mineralogical and Geochemical Characteristics of Serpentinite-Derived Ni-Bearing Laterites from Fars Province, Iran: Implications for the Lateritization Process and Classification of Ni-Laterites

Authors: S. Rasti, M. A. Rajabzadeh

Abstract:

Nickel-bearing laterites occur as two parallel belts along Sedimentary Zagros Orogenic (SZO) and Metamorphic Sanandaj-Sirjan (MSS) petrostructural zones, Fars Province, south Iran. An undisturbed vertical profile of these laterites includes protolith, saprolite, clay, and oxide horizons from base to top. Highly serpentinized harzburgite with relicts of olivine and orthopyroxene is regarded as the source rock. The laterites are unusual in lacking a significant saprolite zone with little development of Ni-silicates. Hematite, saponite, dolomite, smectite and clinochlore increase, while calcite, olivine, lizardite and chrysotile decrease from saprolite to oxide zones. Smectite and clinochlore with minor calcite are the major minerals in clay zone. Contacts of different horizons in laterite profiles are gradual and characterized by a decrease in Mg concentration ranging from 18.1 to 9.3 wt.% in oxide and saprolite, respectively. The maximum Ni concentration is 0.34 wt.% (NiO) in the base of the oxide zone, and goethite is the major Ni-bearing phase. From saprolite to oxide horizons, Al2O3, K2O, TiO2, and CaO decrease, while SiO2, MnO, NiO, and Fe2O3 increase. Silica content reaches up to 45 wt.% in the upper part of the soil profile. There is a decrease in pH (8.44-8.17) and an increase in organic matter (0.28-0.59 wt.%) from base to top of the soils. The studied laterites are classified in the oxide clans which were derived from ophiolite ultramafic rocks under Mediterranean climate conditions.

Keywords: Iran, laterite, mineralogy, ophiolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
99 Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants

Authors: Dionisios Panagiotaras, Elias Stathatos, Dimitrios Papoulis

Abstract:

 Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.

Keywords: Clay mineral, nanotubular Halloysite, Photocatalysis, Titanium Dioxide, Silver modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
98 Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol

Authors: Is Fatimah, Winda Novita, Yopi Andika, Imam Sahroni, Basitoh Djaelani, Yuyun Yunani N.

Abstract:

Contamination of aromatic compounds in water can cause severe long-lasting effects not only for biotic organism but also on human health. Several alternative technologies for remediation of polluted water have been attempted. One of these is adsorption process of aromatic compounds by using organic modified clay mineral. Porous structure of clay is potential properties for molecular adsorptivity and it can be increased by immobilizing hydrophobic structure to attract organic compounds. In this work natural montmorillonite were modified with cetyltrimethylammonium (CTMA+) and was evaluated for use as adsorbents of aromatic compounds: benzene, toluene, and 2-chloro phenol in its single and multicomponent solution by ethanol:water solvent. Preparation of CTMA-montmorillonite was conducted by simple ion exchange procedure and characterization was conducted by using x-day diffraction (XRD), Fourier-transform infra red (FTIR) and gas sorption analysis. The influence of structural modification of montmorillonite on its adsorption capacity and adsorption affinity of organic compound were studied. It was shown that adsorptivity of montmorillonite was increased by modification associated with arrangements of CTMA+ in the structure even the specific surface area of modified montmorillonite was lower than raw montmorillonite. Adsorption rate indicated that material has affinity to adsorb compound by following order: benzene> toluene > 2-chloro phenol. The adsorption isotherms of benzene and toluene showed 1st order adsorption kinetic indicating a partition phenomenon of compounds between the aqueous and organophilic CTMAmontmorillonite.

Keywords: Adsorption, Desorption, Montmorillonite, Organoclay, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
97 Experimental and Computational Analysis of Hygrothermal Performance of an Interior Thermal Insulation System

Authors: Z. Pavlík, J. Kočí, M. Pavlíková, R. Černý

Abstract:

Combined experimental and computational analysis of hygrothermal performance of an interior thermal insulation system applied on a brick wall is presented in the paper. In the experimental part, the functionality of the insulation system is tested at simulated difference climate conditions using a semi-scale device. The measured temperature and relative humidity profiles are used for the calibration of computer code HEMOT that is finally applied for a long-term hygrothermal analysis of the investigated structure.

Keywords: Additional thermal insulation, hygrothermal analysis, semi-scale testing, long-term computational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
96 The Role of Vibro-Stone Column for Enhancing the Soft Soil Properties

Authors: Mohsen Ramezan Shirazi, Orod Zarrin, Komeil Valipourian

Abstract:

This study investigated the behavior of improved soft soils through the vibro replacement technique by considering their settlements and consolidation rates and the applicability of this technique in various types of soils and settlement and bearing capacity calculations.

Keywords: Bearing capacity, expansive clay, stone columns, vibro techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3834
95 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model

Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi

Abstract:

Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).

Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
94 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.

Keywords: Melting furnace, inverse heat transfer, enthalpy method, Levenberg–Marquardt Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
93 Valorization of the Algerian Plaster and Dune Sand in the Building Sector

Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh

Abstract:

The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.

Keywords: Local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
92 The Impact of 21st Century Technology in Higher Education: The Role of Artificial Intelligence

Authors: Josefina Bengoechea, Alex Bell

Abstract:

Higher education, with its brick-and-mortar facilities and credits-based on hours of study, was developed to serve the needs of a national, industrial, analogue economy. However, the ongoing process of globalization on the one hand, and the emergence of ever-changing needs of employers on the other hand, make this type of process-based education obsolete, and exclusive to students who can afford to pay a full-time tuition and dedicate 4 years of their lives exclusively to study. The creative destruction brought about by new technologies in the 21st century will not only reconfigure the labour market, as millions of jobs will be lost to Artificial Intelligence. The purpose of this paper is to consider if the implementation of technology is the solution to the problems faced in higher education. The paper builds upon a constructivist approach, combining a literature review and research on key publications.

Keywords: Artificial intelligence, employability, labour market, new technology in higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
91 Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production

Authors: A. M. Jungudo, M. A. Lasan

Abstract:

Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance.

Keywords: Laterite, stone dust, compressed earth bricks, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
90 Mechanical-Physical Characteristics Affecting the Durability of Fibre Reinforced Concrete with Recycled Aggregate

Authors: Vladimira Vytlacilova

Abstract:

The article presents findings from the study and analysis of the results of an experimental programme focused on the production of concrete and fibre reinforced concrete in which natural aggregate has been substituted with brick or concrete recyclate. The research results are analyzed to monitor the effect of mechanicalphysical characteristics on the durability properties of tested cementitious composites. The key parts of the fibre reinforced concrete mix are the basic components: aggregates – recyclate, cement, fly ash, water and fibres. Their specific ratios and the properties of individual components principally affect the resulting behaviour of fresh fibre reinforced concrete and the characteristics of the final product. The article builds on the sources dealing with the use of recycled aggregates from construction and demolition waste in the production of fibre reinforced concrete. The implemented procedure of testing the composite contributes to the building sustainability in environmental engineering.

Keywords: Recycled aggregate, Polypropylene fibres, Fibre Reinforced Concrete, Fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
89 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: Calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
88 Deflocculation and Gelation of Porcelain Ceramics

Authors: T. Tonthai

Abstract:

Deflocculation and gel characterization were investigated for three different composition of porcelain slips at specific gravity 1.8. The suspensions were dispersed with sodium silicate (Na2SiO3) in under-deflocculated slips and fully deflocculated slips. The rheology characterization of slips was conducted by the deflocculation curves and the gel curves. The results showed that decreasing the amount of the ball clay composition in the slips consumed less dosages of the dispersants. The under-deflocculated slips tended to have a gelation rate faster than the fully deflocculated slips.

Keywords: Ceramics, Deflocculation, Gelation, Porcelain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
87 Experimental Chevreul’s Salt Production Methods on Copper Recovery

Authors: Turan Çalban, Oral Laçin, Abdüsselam Kurtbas

Abstract:

Experimental production methods of Chevreul’s salt being an intermediate stage product in copper recovery were investigated on this article. Chevreul’s salt, Cu2SO3.CuSO3.2H2O, being a mixed valence copper sulphite compound, has been obtained by using different methods and reagents. Chevreul’s salt has an intense brick-red color. It is highly stable and expensive. The production of Chevreul’s salt plays a key role in hydrometallurgy. Thermodynamic tendency on precipitation of Chevreul’s salt is related to pH and temperature. Besides, SO2 gaseous is a versatile reagent for precipitating of copper sulphites, Using of SO2 for selective precipitation can be made by appropriate adjustments of pH and temperature. Chevreul’s salt does not form in acidic solutions if those solutions contains considerable amount of sulfurous acid. It is necessary to maintain between pH 2–4.5, because, solubility of Chevreul’s salt increases with decreasing of pH values. Also, the region which Chevreul’s salt is stable can be seen from the potentialpH diagram.

Keywords: Chevreul’s salt, copper recovery, copper sulphite, stage product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
86 Polymer Mediated Interaction between Grafted Nanosheets

Authors: Supriya Gupta, Paresh Chokshi

Abstract:

Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.

Keywords: Clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
85 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
84 Use of Nanoclay in Various Modified Polyolefins

Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek

Abstract:

Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and PE-ionomer nanocomposite samples were prepared by mixing of the polymer with organofilized montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of each modified montmorillonite (MMT) was fixed to 5% (w/w). The twin-screw kneader was used for the compounding of polymer matrix and chosen nanofillers. The level of MMT exfoliation was studied by the transmission electron microscopy (TEM) observations. The mechanical properties of prepared materials were evaluated by dynamical mechanical analysis at 30°C and by the measurement of tensile properties (stress and strain at break).

Keywords: Polyethylene, Polypropylene, Polyethylene (vinyl acetate), Clay, Nanocomposite, Montmorillonite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
83 Traditional Sustainable Architecture Techniques and Its Applications in Contemporary Architecture: Case Studies of the Islamic House in Fatimid Cairo and Sana'a, Cities in Egypt and Yemen

Authors: Ahmed S. Attia

Abstract:

This paper includes a study of modern sustainable architectural techniques and elements that are originally found in vernacular and traditional architecture, particularly in the Arab region. Courtyards, Wind Catchers, and Mashrabiya, for example, are elements that have been developed in contemporary architecture using modern technology to create sustainable architecture designs. An analytical study of the topic will deal with some examples of the Islamic House in Fatimid Cairo city in Egypt, analyzing its elements and their relationship to the environment, in addition to the examples in southern Egypt (Nubba) of sustainable architecture systems, and traditional houses in Sana'a city, Yemen, using earth resources of mud bricks and other construction materials. In conclusion, a comparative study between traditional and contemporary techniques will be conducted to confirm that it is possible to achieve sustainable architecture through the use of low-technology in buildings in Arab regions.

Keywords: Islamic context, cultural environment, natural environment, Islamic House, low-technology, mud brick, vernacular and traditional architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
82 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: Advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
81 Influence of Hydraulic Hysteresis on Effective Stress in Unsaturated Clay

Authors: Anuchit Uchaipichat

Abstract:

A comprehensive program of laboratory testing on a compacted kaolin in a modified triaxial cell was perform to investigate the influence of hydraulic hysteresis on effective stress in unsaturated soils. The test data are presented on a range of constant suction shear tests along wetting and drying paths. The values of effective stress parameter χ at different matric suction were determined using the test results. The effect of hydraulic hysteresis phenomenon on the effective stress was observed. The values of effective stress parameter χ obtained from the experiments were compared with those obtained from the expressions proposed in literature.

Keywords: Unsaturated soils, Hydraulic hysteresis, Effectivestress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
80 Relation between Properties of Internally Cured Concrete and Water Cement Ratio

Authors: T. Manzur, S. Iffat, M. A. Noor

Abstract:

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Keywords: Compressive strength, concrete, curing, lightweight, aggregate, superabsorbent polymer, internal curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
79 Influence of Non-Structural Elements on Dynamic Response of Multi-Storey Rc Building to Mining Shock

Authors: Joanna M. Dulińska, Maria Fabijańska

Abstract:

In the paper the results of calculations of the dynamic response of a multi-storey reinforced concrete building to a strong mining shock originated from the main region of mining activity in Poland (i.e. the Legnica-Glogow Copper District) are presented. The representative time histories of accelerations registered in three directions were used as ground motion data in calculations of the dynamic response of the structure. Two variants of a numerical model were applied: the model including only structural elements of the building and the model including both structural and non-structural elements (i.e. partition walls and ventilation ducts made of brick). It turned out that non-structural elements of multi-storey RC buildings have a small impact of about 10 % on natural frequencies of these structures. It was also proved that the dynamic response of building to mining shock obtained in case of inclusion of all non-structural elements in the numerical model is about 20 % smaller than in case of consideration of structural elements only. The principal stresses obtained in calculations of dynamic response of multi-storey building to strong mining shock are situated on the level of about 30% of values obtained from static analysis (dead load).

Keywords: Dynamic characteristics of buildings, mining shocks, dynamic response of buildings, non-structural elements

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
78 Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria

Authors: Y. Yongli, M. H. Aissa

Abstract:

The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested.

Keywords: Correlation, geotechnical properties, Miocene marl, north-south highway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
77 Hydrogeological Aspects of Washing Waste Reuse in Quarry Lakes Rehabilitation

Authors: Paola Gattinoni, Laura Scesi

Abstract:

According to the European laws, there is the possibility of reusing the washing wastes for the environmental requalification of quarry lakes. The paper deals with the hydrogeological aspects involved in this possibility, as the introduction of finest wastes in the quarry lakes can generate alterations of the hydrogeological setting of the area, and problems for the future accessibility of the zone. To evaluate the hydrogeological compatibility of the washing wastes reuse in quarry lakes a groundwater numerical model was carried out, pointing out both the hydrogeological feasibility of this intervention and some guide lines for its optimization, in terms of inflow point with regard the groundwater flow direction and loss of volume in the quarry lake.

Keywords: Groundwater numerical modeling, hydrogeologicalalteration, quarry lake, silty-clay wastes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
76 Lightweight Materials Obtained by Utilization of Agricultural Waste

Authors: Bogdan Bogdanov, Irena Markovska, Yancho Hristov, Dimitar Georgiev

Abstract:

Lightweight ceramic materials in the form of bricks and blocks are widely used in modern construction. They may be obtained by adding of rice husk, rye straw, etc, as porous forming materials. Rice husk is a major by-product of the rice milling industry. Its utilization as a valuable product has always been a problem. Various technologies for utilization of rice husk through biological and thermochemical conversion are being developed. The purpose of this work is to develop lightweight ceramic materials with clay matrix and filler of rice husk and examine their main physicomechanical properties. The results obtained allow to suppose that the materials synthesized on the basis of waste materials can be used as lightweight materials for construction purpose.

Keywords: lightweight ceramic materials, properties, agro-waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
75 Effect of Bentonite on the Properties of Liquid Insulating Oil

Authors: Loai Nasrat, Mervat S. Hassan

Abstract:

Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.

Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2656
74 Determination of Required Ion Exchange Solution for Stabilizing Clayey Soils with Various PI

Authors: R. Ziaie Moayed, F. Allahyari

Abstract:

Soil stabilization has been widely used to improve soil strength and durability or to prevent erosion and dust generation. Generally to reduce problems of clayey soils in engineering work and to stabilize these soils additional materials are used. The most common materials are lime, fly ash and cement. Using this materials, although improve soil property , but in some cases due to financial problems and the need to use special equipment are limited .One of the best methods for stabilization clayey soils is neutralization the clay particles. For this purpose we can use ion exchange materials. Ion exchange solution like CBR plus can be used for soil stabilization. One of the most important things in using CBR plus is determination the amount of this solution for various soils with different properties. In this study a laboratory experiment is conduct to evaluate the ion exchange capacity of three soils with various plasticity index (PI) to determine amount or required CBR plus solution for soil stabilization.

Keywords: CBR plus, clayey soils, ion exchange, soil stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
73 An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate

Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, Md. Salamah Meherier

Abstract:

This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.

Keywords: Polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
72 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4054
71 A Hydro-Mechanical Model for Unsaturated Soils

Authors: A. Uchaipichat

Abstract:

The hydro-mechanical model for unsaturated soils has been presented based on the effective stress principle taking into account effects of drying-wetting process. The elasto-plastic constitutive equations for stress-strain relations of the soil skeleton have been established. A plasticity model is modified from modified Cam-Clay model. The hardening rule has been established by considering the isotropic consolidation paths. The effect of dryingwetting process is introduced through the ¤ç parameter. All model coefficients are identified in terms of measurable parameters. The simulations from the proposed model are compared with the experimental results. The model calibration was performed to extract the model parameter from the experimental results. Good agreement between the results predicted using proposed model and the experimental results was obtained.

Keywords: Drying-wetting process, Effective stress, Elastoplasticmodel, Unsaturated soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697