Search results for: Brain Function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2325

Search results for: Brain Function

2295 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2852
2294 A New Definition of the Intrinsic Mode Function

Authors: Zhihua Yang, Lihua Yang

Abstract:

This paper makes a detailed analysis regarding the definition of the intrinsic mode function and proves that Condition 1 of the intrinsic mode function can really be deduced from Condition 2. Finally, an improved definition of the intrinsic mode function is given.

Keywords: Empirical Mode Decomposition (EMD), Hilbert-Huang transform(HHT), Intrinsic Mode Function(IMF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3530
2293 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources

Authors: Md R. Bashar, Yan Li, Peng Wen

Abstract:

This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.

Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
2292 Analysis of Brain Activities due to Differences in Running Shoe Properties

Authors: K. Okubo, Y. Kurihara, T. Kaburagi, K. Watanabe

Abstract:

Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for 10 min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.

Keywords: Brain activities, NIRS, PASAT, running shoes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
2291 Viscoelastic Modeling of Brain MRE Data Using FE Method

Authors: H. Ajabi Naeeni, M. Haghpanahi

Abstract:

Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.

Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2290 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
2289 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
2288 Pattern Recognition as an Internalized Motor Programme

Authors: M. Jändel

Abstract:

A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.

Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
2287 Performance Analysis of Brain Tumor Detection Based On Image Fusion

Authors: S. Anbumozhi, P. S. Manoharan

Abstract:

Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.

Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3016
2286 Studying Mistaken Theory of Calendar Function of Iran-s Cross-Vaults

Authors: Ali Salehipour

Abstract:

After presenting the theory of calendar function of Iran-s cross-vaults especially “Niasar" cross-vault in recent years, there has been lots of doubts and uncertainty about this theory by astrologists and archaeologists. According to this theory “Niasar cross-vault and other cross-vaults of Iran has calendar function and are constructed in a way that sunrise and sunset can be seen from one of its openings in the beginning and middle of each season of year". But, mentioning historical documentaries we conclude here that the theory of calendar function of Iran-s cross-vaults does not have any strong basis and individual cross-vaults had only religious function in Iran.

Keywords: cross-vault, fire temple, Calendar function, Sassanid period

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2285 Self-Esteem and Stress Level among Traumatic Brain Injured Adults with Mild, Moderate and Severe Injuries attending a Day Program Rehabilitation Facility

Authors: Nicole S. McKinney

Abstract:

The purpose of the study was to determine if, among 32 brain injured adults in community rehabilitation programs, there is a statistically significant relationship between the degree of severity of brain injury and these adults- level of self-esteem and stress. The researcher hypothesized there would be a statistically significant difference and a statistically significant relationship in self-esteem and stress levels among and TBI adults. A Pearson product moment correlational analysis was implemented and results found a statistically significant relationship between self-esteem and stress levels. Future recommendations were suggested upon completion of research.

Keywords: anxiety, community recovery center, head-trauma persons, self-concept

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
2284 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analyzing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuro headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM’ chant, Spectral analysis, EDF Browser, EEGLAB, EMOTIV, Real time Acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3535
2283 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods

Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.

Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2282 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
2281 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
2280 Robot Control by ERPs of Brain Waves

Authors: K. T. Sun, Y. H. Tai, H. W. Yang, H. T. Lin

Abstract:

This paper presented the technique of robot control by event-related potentials (ERPs) of brain waves. Based on the proposed technique, severe physical disabilities can free browse outside world. A specific component of ERPs, N2P3, was found and used to control the movement of robot and the view of camera on the designed brain-computer interface (BCI). Users only required watching the stimuli of attended button on the BCI, the evoked potentials of brain waves of the target button, N2P3, had the greatest amplitude among all control buttons. An experimental scene had been constructed that the robot required walking to a specific position and move the view of camera to see the instruction of the mission, and then completed the task. Twelve volunteers participated in this experiment, and experimental results showed that the correct rate of BCI control achieved 80% and the average of execution time was 353 seconds for completing the mission. Four main contributions included in this research: (1) find an efficient component of ERPs, N2P3, for BCI control, (2) embed robot's viewpoint image into user interface for robot control, (3) design an experimental scene and conduct the experiment, and (4) evaluate the performance of the proposed system for assessing the practicability.

Keywords: Brain-computer interface (BCI), event-related potentials (ERPs), robot control, severe physical disabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
2279 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2278 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The modern Artificial Narrow Intelligence (ANI) models cannot: a) independently, situationally, and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, and cognize under uncertainty and changing of the environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU). This system uses a neural network as its computational memory, and activates functions of the perception, identification of real objects, fuzzy situational control, and forming images of these objects. These images and objects are used for modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision Making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, and Wisdom. In doing so are performed analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge of the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of situational control, fuzzy logic, psycholinguistics, informatics, and modern possibilities of data science were applied. The proposed self-controlled system of brain and mind is oriented on use as a plug-in in multilingual subject applications.

Keywords: Computational psycholinguistic cognitive brain and mind system, situational fuzzy control, uncertainty, AI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323
2277 Evaluation on Recent Committed Crypt Analysis Hash Function

Authors: A. Arul Lawrence Selvakumar, C. Suresh Ganandhas

Abstract:

This paper describes the study of cryptographic hash functions, one of the most important classes of primitives used in recent techniques in cryptography. The main aim is the development of recent crypt analysis hash function. We present different approaches to defining security properties more formally and present basic attack on hash function. We recall Merkle-Damgard security properties of iterated hash function. The Main aim of this paper is the development of recent techniques applicable to crypt Analysis hash function, mainly from SHA family. Recent proposed attacks an MD5 & SHA motivate a new hash function design. It is designed not only to have higher security but also to be faster than SHA-256. The performance of the new hash function is at least 30% better than that of SHA-256 in software. And it is secure against any known cryptographic attacks on hash functions.

Keywords: Crypt Analysis, cryptographic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
2276 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana

Abstract:

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

Keywords: Brain Computer Interface (BCI), gait trainer, Spinal Cord Injury (SCI), neurorehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
2275 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf

Abstract:

Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
2274 The Core and Shapley Function for Games on Augmenting Systems with a Coalition Structure

Authors: Fan-Yong Meng

Abstract:

In this paper, we first introduce the model of games on augmenting systems with a coalition structure, which can be seen as an extension of games on augmenting systems. The core of games on augmenting systems with a coalition structure is defined, and an equivalent form is discussed. Meantime, the Shapley function for this type of games is given, and two axiomatic systems of the given Shapley function are researched. When the given games are quasi convex, the relationship between the core and the Shapley function is discussed, which does coincide as in classical case. Finally, a numerical example is given.

Keywords: Cooperative game, augmenting system, Shapley function, core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
2273 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
2272 Calculation of Wave Function at the Origin (WFO) for the Ground State of Doubly Heavy Mesons Based On the Variational Method

Authors: Maryam Momeni Feili, Mahvash Zandy Navgaran

Abstract:

The wave function at the origin is an important quantity in studying many physical problems concerning heavy quarkonia. This is because that it is using for calculating spin state hyperfine splitting and also crucial to evaluating the production and decay amplitude of the heavy quarkonium. In this paper, we present the variational method by using the single-parameter wave function to estimate the WFO for the ground state of heavy mesons.

Keywords: Wave function at the origin, heavy mesons, bound states, variational method, non-relativistic quark model, potential model, trial wave function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
2271 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease

Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin

Abstract:

Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.

Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
2270 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain

Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala

Abstract:

The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.

Keywords: Emotions, decision making, somatic marker, consumer´s brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
2269 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: Thermoacoustics, dynamics, combustor, transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
2268 Optimizing Voltage Parameter of Deep Brain Stimulation for Parkinsonian Patients by Modeling

Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi

Abstract:

Deep Brain Stimulation or DBS is the second solution for Parkinson's Disease. Its three parameters are: frequency, pulse width and voltage. They must be optimized to achieve successful treatment. Nowadays it is done clinically by neurologists and there is not certain numerical method to detect them. The aim of this research is to introduce simulation and modeling of Parkinson's Disease treatment as a computational procedure to select optimum voltage. We recorded finger tremor signals of some Parkinsonian patients under DBS treatment at constant frequency and pulse width but variable voltages; then, we adapted a new model to fit these data. The optimum voltages obtained by data fitting results were the same as neurologists- commented voltages, which means modeling can be used as an engineering method to select optimum stimulation voltages.

Keywords: modeling, Deep Brain Stimulation, Parkinson'sdisease, tremor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
2267 Predicting Protein Function using Decision Tree

Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur

Abstract:

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

Keywords: Sequence Derived Features, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
2266 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050