Search results for: Biomass wastes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 457

Search results for: Biomass wastes

307 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass

Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi

Abstract:

Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.

Keywords: Dunaliella salina, mutant, ethyl methane sulfonate, growth rate, biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
306 Influence of Ammonium Concentration on the Performance of an Inorganic Biofilter Treating Methane

Authors: Marc Veillette, Antonio Avalos Ramirez, Michèle Heitz

Abstract:

Among the technologies available to reduce methane emitted from the pig industry, biofiltration seems to be an effective and inexpensive solution. In methane (CH4) biofiltration, nitrogen is an important macronutrient for the microorganisms growth. The objective of this research project was to study the effect of ammonium (NH4 +) on the performance, the biomass production and the nitrogen conversion of a biofilter treating methane. For NH4 + concentrations ranging from 0.05 to 0.5 gN-NH4 +/L, the CH4 removal efficiency and the dioxide carbon production rate decreased linearly from 68 to 11.8 % and from 7.1 to 0.5 g/(m3-h), respectively. The dry biomass content varied from 4.1 to 5.8 kg/(m3 filter bed). For the same range of concentrations, the ammonium conversion decreased while the specific nitrate production rate increased. The specific nitrate production rate presented negative values indicating denitrification in the biofilter.

Keywords: Methane, biofiltration, pig, ammonium, nitrification, denitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
305 Evaluation of Antifungal Potential of Cenchrus pennisetiformis for the Management of Macrophomina phaseolina

Authors: Arshad Javaid, Syeda F. Naqvi

Abstract:

Macrophomina phaseolina is a devastating soil-borne fungal plant pathogen that causes charcoal rot disease in many economically important crops worldwide. So far, no registered fungicide is available against this plant pathogen. This study was planned to examine the antifungal activity of an allelopathic grass Cenchrus pennisetiformis (Hochst. & Steud.) Wipff. for the management of M. phaseolina isolated from cowpea [Vigna unguiculata (L.) Walp.] plants suffering from charcoal rot disease. Different parts of the plants viz. inflorescence, shoot and root were extracted in methanol. Laboratory bioassays were carried out using different concentrations (0, 0.5, 1.0, …, 3.0 g mL-1) of methanolic extracts of the test allelopathic grass species to assess the antifungal activity against the pathogen. In general, extracts of all parts of the grass exhibited antifungal activity. All the concentrations of methanolic extracts of shoot and root significantly reduced fungal biomass by 20–73% and 40–80%, respectively. Methanolic shoot extract was fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. Different concentrations of these fractions (3.125, 6.25, …, 200 mg mL-1) were analyzed for their antifungal activity. All the concentrations of n-hexane fraction significantly reduced fungal biomass by 15–96% over corresponding control treatments. Higher concentrations (12.5–200 mg mL-1) of chloroform, ethyl acetate and n-butanol also reduced the fungal biomass significantly by 29–100%, 46–100% and 24–100%, respectively.

Keywords: Antifungal activity, Cenchrus pennisetiformis, Macrophomina phaseolina, natural fungicides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
304 Carbon Accumulation in Winter Wheat under Different Growing Intensity and Climate Change

Authors: V. Povilaitis, S. Lazauskas, Š. Antanaitis, S. Sakalauskien, J. Sakalauskait, G. Pšibišauskien, O. Auškalnien, S. Raudonius, P. Duchovskis

Abstract:

World population growth drives food demand, promotes intensification of agriculture, development of new production technologies and varieties more suitable for regional nature conditions. Climate change can affect the length of growing period, biomass and carbon accumulation in winter wheat. The increasing mean air temperature resulting from climate change can reduce the length of growth period of cereals, and without adequate adjustments in growing technologies or varieties, can reduce biomass and carbon accumulation. Deeper understanding and effective measures for monitoring and management of cereal growth process are needed for adaptation to changing climate and technological conditions.

Keywords: carbon, climate change, modeling, winter wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
303 Physico-chemical Treatment of Tar-Containing Wastewater Generated from Biomass Gasification Plants

Authors: Vrajesh Mehta, Anal Chavan

Abstract:

Treatment of tar-containing wastewater is necessary for the successful operation of biomass gasification plants (BGPs). In the present study, tar-containing wastewater was treated using lime and alum for the removal of in-organics, followed by adsorption on powdered activated carbon (PAC) for the removal of organics. Limealum experiments were performed in a jar apparatus and activated carbon studies were performed in an orbital shaker. At optimum concentrations, both lime and alum individually proved to be capable of removing color, total suspended solids (TSS) and total dissolved solids (TDS), but in both cases, pH adjustment had to be carried out after treatment. The combination of lime and alum at the dose ratio of 0.8:0.8 g/L was found to be optimum for the removal of inorganics. The removal efficiency achieved at optimum concentrations were 78.6, 62.0, 62.5 and 52.8% for color, alkalinity, TSS and TDS, respectively. The major advantages of the lime-alum combination were observed to be as follows: no requirement of pH adjustment before and after treatment and good settleability of sludge. Coagulation-precipitation followed by adsorption on PAC resulted in 92.3% chemical oxygen demand (COD) removal and 100% phenol removal at equilibrium. Ammonia removal efficiency was found to be 11.7% during coagulation-flocculation and 36.2% during adsorption on PAC. Adsorption of organics on PAC in terms of COD and phenol followed Freundlich isotherm with Kf = 0.55 & 18.47 mg/g and n = 1.01 & 1.45, respectively. This technology may prove to be one of the fastest and most techno-economically feasible methods for the treatment of tar-containing wastewater generated from BGPs.

Keywords: Activated carbon, Alum, Biomass gasification, Coagulation-flocculation, Lime, Tar-containing wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3624
302 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3254
301 Prediction Heating Values of Lignocellulosics from Biomass Characteristics

Authors: Kaltima Phichai, Pornchanoke Pragrobpondee, Thaweesak Khumpart, Samorn Hirunpraditkoon

Abstract:

The paper provides biomasses characteristics by proximate analysis (volatile matter, fixed carbon and ash) and ultimate analysis (carbon, hydrogen, nitrogen and oxygen) for the prediction of the heating value equations. The heating value estimation of various biomasses can be used as an energy evaluation. Thirteen types of biomass were studied. Proximate analysis was investigated by mass loss method and infrared moisture analyzer. Ultimate analysis was analyzed by CHNO analyzer. The heating values varied from 15 to 22.4MJ kg-1. Correlations of the calculated heating value with proximate and ultimate analyses were undertaken using multiple regression analysis and summarized into three and two equations, respectively. Correlations based on proximate analysis illustrated that deviation of calculated heating values from experimental heating values was higher than the correlations based on ultimate analysis.

Keywords: Heating value equation, Proximate analysis, Ultimate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
300 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam

Authors: T. M. Ismail, M. Abd El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.

Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
299 Effects of Wastewater Strength and Salt Stress on Microalgal Biomass Production and Lipid Accumulation

Authors: Praepilas Dujjanutat, Pakawadee Kaewkannetra

Abstract:

This work aims to investigate a potential of microalgae for utilizing industrial wastewater as a cheap nutrient for their growth and oil accumulation. Wastewater was collected from the effluent ponds of agro-industrial factories (cassava and ethanol production plants). Only 2 microalgal strains were isolated and identified as Scenedesmus quadricauda and Chlorella sp.. However, only S. quadricauda was selected to cultivate in various wastewater concentrations (10%, 20%, 40%, 60%, 80% and 100%). The highest biomass obtained at 6.6×106 and 6.27×106 cells/ml when 60% wastewater was used in flask and photo-bioreactor. The cultures gave the highest lipid content at 18.58 % and 42.86% in cases of S. quadricauda and S. obliquus. In addition, under salt stress (1.0 M NaCl), S. obliquus demonstrated the highest lipid content at 50% which was much more than the case of no NaCl adding. However, the concentration of NaCl does not affect on lipid accumulation in case of S. quadricauda.

Keywords: Cassava wastewater, cultivation, lipid accumulation, microalgae

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
298 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions

Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün

Abstract:

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.

Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
297 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System

Authors: Vincent Alexander, Rizkita Esyanti

Abstract:

Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.

Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
296 Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies

Authors: R. Rajeshkannan, M. Rajasimman, N. Rajamohan

Abstract:

In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.

Keywords: Response surface methodology, Hydrilla verticillata, malachite green, adsorption, central composite design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
295 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3341
294 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
293 Phytotoxicity of Daphne Gnidium L. Occurring in Tunisia

Authors: Ladhari A., Omezzine F., Rinez A., Haouala R.

Abstract:

Phytotoxicity of Daphne gnidium L. was evaluated through the effect of incorporating leaves, stems and roots biomass into soil (at 12.5, 25, 50g/Kg) and irrigation by their aqueous extracts (50g/L), on the growth of two crops (Lactuca sativa L. and Raphanus sativus L.) and two weeds (Peaganum harmala L. and Scolymus maculatus L.). Results revealed a perceptible phytotoxic effect which increased with dose and concentration. At the highest dose, roots and leaves residues was the most toxic and caused total inhibition respectively, for lettuce and thistle seedling growth. Irrigation with aqueous extracts of D. gnidium different organs decreased also seedlings length of all test species. Stems extract was more inhibitor on thistle than peganum seedling growth; it induced a significant reduction of 80% and 67%, for, respectively, roots and shoots. Results of the present study suggest that different organs of D. gnidium could be exploited in the management of agro-ecosystems.

Keywords: Biomass, Daphne gnidium L., phytoxicity, seedlinggrowth

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
292 The Effect of Compost Addition on Chemical and Nitrogen Characteristics, Respiration Activity and Biomass Production in Prepared Reclamation Substrates

Authors: L. Plošek, F. Nsanganwimana, B. Pourrut, J. Elbl, J. Hynšt, A. Kintl, D. Kubná, J. Záhora

Abstract:

Land degradation is of concern in many countries. People more and more must address the problems associated with the degradation of soil properties due to man. Increasingly, organic soil amendments, such as compost are being examined for their potential use in soil restoration and for preventing soil erosion. In the Czech Republic, compost is the most used to improve soil structure and increase the content of soil organic matter. Land reclamation / restoration is one of the ways to evaluate industrially produced compost because Czech farmers are not willing to use compost as organic fertilizer. The most common use of reclamation substrates in the Czech Republic is for the rehabilitation of landfills and contaminated sites.

This paper deals with the influence of reclamation substrates (RS) with different proportions of compost and sand on selected soil properties–chemical characteristics, nitrogen bioavailability, leaching of mineral nitrogen, respiration activity and plant biomass production. Chemical properties vary proportionally with addition of compost and sand to the control variant (topsoil). The highest differences between the variants were recorded in leaching of mineral nitrogen (varies from 1.36mg dm-3 in C to 9.09mg dm-3). Addition of compost to soil improves conditions for plant growth in comparison with soil alone. However, too high addition of compost may have adverse effects on plant growth. In addition, high proportion of compost increases leaching of mineral N. Therefore, mixture of 70% of soil with 10% of compost and 20% of sand may be recommended as optimal composition of RS.

Keywords: Biomass, Compost, Reclamation, Respiration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
291 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.

Keywords: Asphalt, basalt, pavement, recycled aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
290 Production of 3-Methyl-1-Butanol by Yeast Wild Strain

Authors: R. Nor Azah, A. R. Roshanida, N. Norzita

Abstract:

The biomass-based fuels have become great concern in order to replace the petroleum-based fuels. Biofuels are a wide range of fuels referred to liquid, gas and solid fuels produced from biomass. Recently, higher chain alcohols such as 3-methyl-1-butanol and isobutanol have become a better candidate compared to bioethanol in order to replace gasoline as transportation fuel. Therefore, in this study, 3-methyl-1-butanol was produced through a fermentation process by yeast. Several types of yeast involved in this research including Saccharomyces cerevisiae, Kluyveromyces lactis GG799 and Pichia pastoris (KM71H, GS115 and X33). The result obtained showed that K. lactis GG799 gave the highest concentration of 3-methyl-1-butanol at 274 mg/l followed by S. cerevisiae, P. pastoris GS115, P. pastoris KM71H and P. pastoris X33 at 265 mg/l, 190 mg/l, 182 mg/l and 174 mg/l respectively. Based on the result, it proved that yeast have a potential in producing 3-methyl-1-butanol naturally.

Keywords: Biofuel, fermentation, 3-methyl-1-butanol, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
289 Recycling Construction Waste Materials to Reduce the Environmental Pollutants

Authors: Mehrdad Abkenari, Alireza Rezaei, Naghmeh Pournayeb

Abstract:

There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term 'construction waste' covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people's primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained.

Keywords: Civil engineering, environment, recycling, construction waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
288 A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs

Authors: Jirakarn Nantapipat, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis.

Keywords: Corncobs, Pretreatment, Sulfuric acid, Phosphoric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3375
287 Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs

Authors: Sirikarn Satimanont, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.

Keywords: Butanol production, Corn cobs, Phosphoric acid, Pretreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
286 Process Optimization for Enhanced Production of Cell Biomass and Metabolites of Fluorescent Pseudomonad R81

Authors: M.V.R.K Sarma, Krishna Saharan, Lalit Kumar, Ashwani Gautam, Avhijeet Kapoor, Nishant Srivastava, Vikram Sahai, V.S Bisaria

Abstract:

The fluorescent pseudomonad strain R81 is a root colonizing rhizobacteria which promotes the growth of many plants by various mechanisms. Its broth containing siderophore (ironchelating compound) and 2,4- diacetyl phloroglucinol (DAPG) is used for preparing bioinoculant formulations for agronomical applications. Glycerol was found to be the best carbon source for improved biomass production. Splitting of nitrogen source to NH4Cl and urea had a stabilizing effect on pH during batch cultivation. Ltryptophan at 0.5 % in the medium increased the siderophore production to 850 mg/l. During batch cultivation of the strain in a bioreactor, a maximum of 4 g/l of dry cell mass, 1.8 g/l of siderophore and 20 mg/l of DAPG was achieved when glycerol was 15 g/l and C/N ratio was maintained at 12.5. In case of intermittent feeding of fresh medium during fed-batch cultivation, the dry cell mass was increased to 25 g/l with improved production of DAPG to 70 mg/l.

Keywords: Batch cultivation, Fed-batch cultivation, fluorescent pseudomonad, Metabolites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
285 Investigation into Heterotrophic Activities and Algal Biomass in Surface Flow Stormwater Wetlands

Authors: Wendong Tao

Abstract:

Stormwater wetlands have been mainly designed in an empirical approach for water quality improvement, with little quantitative understanding of the internal microbial processes. This study investigated into heterotrophic bacterial production rate, heterotrophic bacterial mineralization percentage, and algal biomass in hypertrophic and eutrophic surface flow stormwater wetlands. Compared to a nearby wood leachate treatment wetland, the stormwater wetlands had much higher chlorophyll-a concentrations. The eutrophic stormwater wetland had improved water quality, whereas the hypertrophic stormwater wetland had degraded water quality. Heterotrophic bacterial activities in water were limited in the stormwater wetlands due to competition of algal growth for nutrients. The relative contribution of biofilms to the overall heterotrophic activities was higher in the stormwater wetlands than that in the wood leachate treatment wetland.

Keywords: chlorophyll-a, constructed wetland, heterotrophicproduction, mineralization, stormwater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
284 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. In delivering services, highway industry has been indirectly involved in producing scheduled wastes. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled waste management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on scheduled waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of schedule waste such as cancer, throat irritation and respiration problem.

Keywords: Asia Region, Environment, Highway Industry, Scheduled Waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
283 Seasonal Influence on Environmental Indicators of Beach Waste

Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman

Abstract:

The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.

Keywords: Beach solid waste, environmental indicators, quali-quantitative analysis, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
282 Culture of Oleaginous Yeasts in Dairy Industry Wastewaters to Obtain Lipids Suitable for the Production of II-Generation Biodiesel

Authors: Domenico Pirozzi, Angelo Ausiello, Gaetano Zuccaro, Filomena Sannino, Abu Yousuf

Abstract:

The oleaginous yeasts Lipomyces starkey were grown in the presence of dairy industry wastewaters (DIW). The yeasts were able to degrade the organic components of DIW and to produce a significant fraction of their biomass as triglycerides. When using DIW from the Ricotta cheese production or residual whey as growth medium, the L. starkey could be cultured without dilution nor external organic supplement. On the contrary, the yeasts could only partially degrade the DIW from the Mozzarella cheese production, due to the accumulation of a metabolic product beyond the threshold of toxicity. In this case, a dilution of the DIW was required to obtain a more efficient degradation of the carbon compounds and an higher yield in oleaginous biomass. The fatty acid distribution of the microbial oils obtained showed a prevalence of oleic acid, and is compatible with the production of a II generation biodiesel offering a good resistance to oxidation as well as an excellent cold-performance.

Keywords: Yeasts, Lipids, Biodiesel, Dairy industry wastewaters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
281 Optimization of Growth of Rhodobacter Sphaeroides Using Mixed Volatile Fatty Acidsby Response Surface Methodology

Authors: R.Sangeetha, T.Karunanithi

Abstract:

A combination of photosynthetic bacteria along with anaerobic acidogenic bacteria is an ideal option for efficient hydrogen production. In the present study, the optimum concentration of substrates for the growth of Rhodobacter sphaeroides was found by response surface methodology. The optimum combination of three individual fatty acids was determined by Box Behnken design. Increase of volatile fatty acid concentration decreased the growth. Combination of sodium acetate and sodium propionate was most significant for the growth of the organism. The results showed that a maximum biomass concentration of 0.916 g/l was obtained when the concentrations of acetate, propionate and butyrate were 0.73g/l,0.99g/l and 0.799g/l, respectively. The growth was studied under an optimum concentration of volatile fatty acids and at a light intensity of 3000 lux, initial pH of 7 and a temperature of 35°C.The maximum biomass concentration of 0.92g/l was obtained which verified the practicability of this optimization.

Keywords: Biohydrogen, Response Surface Methodology, Rhodobacter sphaeroides, Volatile fatty acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
280 The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study

Authors: F. Amin Salehi, L. Sharp, M. A. Abdoli, D.E.Cotton, K.Rezapour

Abstract:

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
279 Heat and Mass Transfer in a Solar Dryer with Biomass Backup Burner

Authors: Andrew R.H. Rigit, Patrick T.K. Low

Abstract:

Majority of pepper farmers in Malaysia are using the open-sun method for drying the pepper berries. This method is time consuming and exposed the berries to rain and contamination. A maintenance-friendly and properly enclosed dryer is therefore desired. A dryer design with a solar collector and a chimney was studied and adapted to suit the needs of small-scale pepper farmers in Malaysia. The dryer will provide an environment with an optimum operating temperature meant for drying pepper berries. The dryer model was evaluated by using commercially available computational fluid dynamic (CFD) software in order to understand the heat and mass transfer inside the dryer. Natural convection was the only mode of heat transportation considered in this study as in accordance to the idea of having a simple and maintenance-friendly design. To accommodate the effect of low buoyancy found in natural convection driers, a biomass burner was integrated into the solar dryer design.

Keywords: Computational fluid dynamics, heat and masstransfer, solar dryer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3605
278 Removal of Chlorinated Resin and Fatty Acids from Paper Mill wastewater through Constructed Wetland

Authors: Ashutosh Kumar Choudhary, Satish Kumar, Chhaya Sharma

Abstract:

This study evaluates the performance of horizontal subsurface flow constructed wetland (HSSF-CW) for the removal of chlorinated resin and fatty acids (RFAs) from pulp and paper mill wastewater. The dimensions of the treatment system were 3.5 m x 1.5 m x 0.28 m with surface area of 5.25 m2, filled with fine sand and gravel. The cell was planted with an ornamental plant species Canna indica. The removal efficiency of chlorinated RFAs was in the range of 92-96% at the hydraulic retention time (HRT) of 5.9 days. Plant biomass and soil (sand and gravel) were analyzed for chlorinated RFAs content. No chlorinated RFAs were detected in plant biomass but detected in soil samples. Mass balance studies of chlorinated RFAs in HSSF-CW were also carried out.

Keywords: Canna indica, Chlorinated resin & fatty acids, Constructed wetland, Pulp and paper mill wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115