Search results for: Automatic Normalization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 699

Search results for: Automatic Normalization

699 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: Relational Database, Functional Dependency, Automatic Normalization, Primary Key, Spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
698 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho

Abstract:

Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.

Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
697 Adaptive Score Normalization: A Novel Approach for Multimodal Biometric Systems

Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara

Abstract:

Multimodal biometric systems integrate the data presented by multiple biometric sources, hence offering a better performance than the systems based on a single biometric modality. Although the coupling of biometric systems can be done at different levels, the fusion at the scores level is the most common since it has been proven effective than the rest of the fusion levels. However, the scores from different modalities are generally heterogeneous. A step of normalizing the scores is needed to transform these scores into a common domain before combining them. In this paper, we study the performance of several normalization techniques with various fusion methods in a context relating to the merger of three unimodal systems based on the face, the palmprint and the fingerprint. We also propose a new adaptive normalization method that takes into account the distribution of client scores and impostor scores. Experiments conducted on a database of 100 people show that the performances of a multimodal system depend on the choice of the normalization method and the fusion technique. The proposed normalization method has given the best results.

Keywords: Multibiometrics, Fusion, Score level, Score normalization, Adaptive normalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
696 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
695 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements

Authors: Shagufta Tabassum

Abstract:

The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. Here we discuss the basic calibration and normalization procedure for TDR measurements. Our aim is to explain different types of error occur during TDR measurements and how to minimize it.

Keywords: time domain reflectometry measurement technique, cable and connector loss, oscilloscope loss, normalization technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
694 Photograph Based Pair-matching Recognition of Human Faces

Authors: Min Yao, Kota Aoki, Hiroshi Nagahashi

Abstract:

In this paper, a novel system recognition of human faces without using face different color photographs is proposed. It mainly in face detection, normalization and recognition. Foot method of combination of Haar-like face determined segmentation and region-based histogram stretchi (RHST) is proposed to achieve more accurate perf using Haar. Apart from an effective angle norm side-face (pose) normalization, which is almost a might be important and beneficial for the prepr introduced. Then histogram-based and photom normalization methods are investigated and ada retinex (ASR) is selected for its satisfactory illumin Finally, weighted multi-block local binary pattern with 3 distance measures is applied for pair-mat Experimental results show its advantageous perfo with PCA and multi-block LBP, based on a principle.

Keywords: Face detection, pair-matching rec normalization, skin color segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
693 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition

Authors: Hazem M. El-Bakry

Abstract:

Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.

Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
692 Dynamic Model of Automatic Loom on SimulationX

Authors: A. Jomartov, A. Tuleshov, B. Tultaev

Abstract:

One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.

Keywords: Automatic loom, dynamics, model, multibody, SimulationX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
691 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
690 Normalization and Constrained Optimization of Measures of Fuzzy Entropy

Authors: K.C. Deshmukh, P.G. Khot, Nikhil

Abstract:

In the literature of information theory, there is necessity for comparing the different measures of fuzzy entropy and this consequently, gives rise to the need for normalizing measures of fuzzy entropy. In this paper, we have discussed this need and hence developed some normalized measures of fuzzy entropy. It is also desirable to maximize entropy and to minimize directed divergence or distance. Keeping in mind this idea, we have explained the method of optimizing different measures of fuzzy entropy.

Keywords: Fuzzy set, Uncertainty, Fuzzy entropy, Normalization, Membership function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
689 Normalizing Logarithms of Realized Volatility in an ARFIMA Model

Authors: G. L. C. Yap

Abstract:

Modelling realized volatility with high-frequency returns is popular as it is an unbiased and efficient estimator of return volatility. A computationally simple model is fitting the logarithms of the realized volatilities with a fractionally integrated long-memory Gaussian process. The Gaussianity assumption simplifies the parameter estimation using the Whittle approximation. Nonetheless, this assumption may not be met in the finite samples and there may be a need to normalize the financial series. Based on the empirical indices S&P500 and DAX, this paper examines the performance of the linear volatility model pre-treated with normalization compared to its existing counterpart. The empirical results show that by including normalization as a pre-treatment procedure, the forecast performance outperforms the existing model in terms of statistical and economic evaluations.

Keywords: Long-memory, Gaussian process, Whittle estimator, normalization, volatility, value-at-risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
688 A Robust Image Watermarking Scheme using Image Moment Normalization

Authors: Latha Parameswaran, K. Anbumani

Abstract:

Multimedia security is an incredibly significant area of concern. A number of papers on robust digital watermarking have been presented, but there are no standards that have been defined so far. Thus multimedia security is still a posing problem. The aim of this paper is to design a robust image-watermarking scheme, which can withstand a different set of attacks. The proposed scheme provides a robust solution integrating image moment normalization, content dependent watermark and discrete wavelet transformation. Moment normalization is useful to recover the watermark even in case of geometrical attacks. Content dependent watermarks are a powerful means of authentication as the data is watermarked with its own features. Discrete wavelet transforms have been used as they describe image features in a better manner. The proposed scheme finds its place in validating identification cards and financial instruments.

Keywords: Watermarking, moments, wavelets, content-based, benchmarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
687 Using Automated Database Reverse Engineering for Database Integration

Authors: M. R. Abbasifard, M. Rahgozar, A. Bayati, P. Pournemati

Abstract:

One important problem in today organizations is the existence of non-integrated information systems, inconsistency and lack of suitable correlations between legacy and modern systems. One main solution is to transfer the local databases into a global one. In this regards we need to extract the data structures from the legacy systems and integrate them with the new technology systems. In legacy systems, huge amounts of a data are stored in legacy databases. They require particular attention since they need more efforts to be normalized, reformatted and moved to the modern database environments. Designing the new integrated (global) database architecture and applying the reverse engineering requires data normalization. This paper proposes the use of database reverse engineering in order to integrate legacy and modern databases in organizations. The suggested approach consists of methods and techniques for generating data transformation rules needed for the data structure normalization.

Keywords: Reverse Engineering, Database Integration, System Integration, Data Structure Normalization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
686 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
685 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques

Authors: C. Ardil

Abstract:

This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.

Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
684 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
683 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: Automatic Speech Recognition, ASR, Air Traffic Control, ATC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042
682 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
681 A Normalization-based Robust Image Watermarking Scheme Using SVD and DCT

Authors: Say Wei Foo, Qi Dong

Abstract:

Digital watermarking is one of the techniques for copyright protection. In this paper, a normalization-based robust image watermarking scheme which encompasses singular value decomposition (SVD) and discrete cosine transform (DCT) techniques is proposed. For the proposed scheme, the host image is first normalized to a standard form and divided into non-overlapping image blocks. SVD is applied to each block. By concatenating the first singular values (SV) of adjacent blocks of the normalized image, a SV block is obtained. DCT is then carried out on the SV blocks to produce SVD-DCT blocks. A watermark bit is embedded in the highfrequency band of a SVD-DCT block by imposing a particular relationship between two pseudo-randomly selected DCT coefficients. An adaptive frequency mask is used to adjust local watermark embedding strength. Watermark extraction involves mainly the inverse process. The watermark extracting method is blind and efficient. Experimental results show that the quality degradation of watermarked image caused by the embedded watermark is visually transparent. Results also show that the proposed scheme is robust against various image processing operations and geometric attacks.

Keywords: Image watermarking, Image normalization, Singularvalue decomposition, Discrete cosine transform, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
680 Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

Authors: Jia-Rong Yeh, Ai-Hsien Li, Jiann-Shing Shieh, Yen-An Su, Chi-Yu Yang

Abstract:

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.

Keywords: Signal processing, electrocardiography (ECG), QRS complex, arrhythmia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
679 Evaluation of Manual and Automatic Calibration Methods for Digital Tachographs

Authors: Sarp Erturk, Levent Eyigel, Cihat Celik, Muhammet Sahinoglu, Serdar Ay, Yasin Kaya, Hasan Kaya

Abstract:

This paper presents a quantitative analysis on the need for automotive calibration methods for digital tachographs. Digital tachographs are mandatory for vehicles used in people and goods transport and they are an important aspect for road safety and inspection. Digital tachographs need to be calibrated for workshops in order for the digital tachograph to display and record speed and odometer values correctly. Calibration of digital tachographs can be performed either manual or automatic. It is shown in this paper that manual calibration of digital tachographs is prone to errors and there can be differences between manual and automatic calibration parameters. Therefore automatic calibration methods are imperative for digital tachograph calibration. The presented experimental results and error analysis clearly support the claims of the paper by evaluating and statistically comparing manual and automatic calibration methods.

Keywords: Digital tachograph, road safety, tachograph calibration, tachograph workshops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
678 A Simple Adaptive Algorithm for Norm-Constrained Optimization

Authors: Hyun-Chool Shin

Abstract:

In this paper we propose a simple adaptive algorithm iteratively solving the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates scalar normalization which is computationally much simpler. The analysis of stationary point is presented to show that the proposed algorithm indeed solves the constrained optimization problem. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

Keywords: constrained optimization, unit-norm, LMS, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
677 Research and Development of Intelligent Cooling Channels Design System

Authors: Q. Niu, X. H. Zhou, W. Liu

Abstract:

The cooling channels of injection mould play a crucial role in determining the productivity of moulding process and the product quality. It’s not a simple task to design high quality cooling channels. In this paper, an intelligent cooling channels design system including automatic layout of cooling channels, interference checking and assembly of accessories is studied. Automatic layout of cooling channels using genetic algorithm is analyzed. Through integrating experience criteria of designing cooling channels, considering the factors such as the mould temperature and interference checking, the automatic layout of cooling channels is implemented. The method of checking interference based on distance constraint algorithm and the function of automatic and continuous assembly of accessories are developed and integrated into the system. Case studies demonstrate the feasibility and practicality of the intelligent design system.

Keywords: Injection mould, cooling channel, automatic layout, interference checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
676 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery

Authors: Seema Biday, Udhav Bhosle

Abstract:

Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.

Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
675 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Then, an automatic pixel classification approach is proposed. The feature vectors are clustered using an unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: Image segmentation, moment-based texture analysis, automatic classification, validity indexes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
674 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
673 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
672 Performance of Laboratory Experiments over the Internet: Towards an Intelligent Tutoring System on Automatic Control

Authors: Kleanthis Prekas, Maria Rangoussi, Savvas Vassiliadis, George Prekas

Abstract:

Intelligent tutoring systems constitute an evolution of computer-aided educational software. We present here the modules of an intelligent tutoring system for Automatic Control, developed in our department. Through the software application developed,students can perform complete automatic control laboratory experiments, either over the departmental local area network or over the Internet. Monitoring of access to the system (local as well as international), along with student performance statistics, has yielded strongly encouraging results (as of fall 2004), despite the advanced technical content of the presented paradigm, thus showing the potential of the system developed for education and for training.

Keywords: Automatic control, tutoring system, Internet access, laboratory experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
671 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R color component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: Chromaticity, Feature Extraction, Remote Sensing, Spectral library, Water Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
670 Automatic Microaneurysm Quantification for Diabetic Retinopathy Screening

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Microaneurysm is a key indicator of diabetic retinopathy that can potentially cause damage to retina. Early detection and automatic quantification are the keys to prevent further damage. In this paper, which focuses on automatic microaneurysm detection in images acquired through non-dilated pupils, we present a series of experiments on feature selection and automatic microaneurysm pixel classification. We found that the best feature set is a combination of 10 features: the pixel-s intensity of shade corrected image, the pixel hue, the standard deviation of shade corrected image, DoG4, the area of the candidate MA, the perimeter of the candidate MA, the eccentricity of the candidate MA, the circularity of the candidate MA, the mean intensity of the candidate MA on shade corrected image and the ratio of the major axis length and minor length of the candidate MA. The overall sensitivity, specificity, precision, and accuracy are 84.82%, 99.99%, 89.01%, and 99.99%, respectively.

Keywords: Diabetic retinopathy, microaneurysm, naive Bayes classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190