

Abstract— One important problem in today organizations is the

existence of non-integrated information systems, inconsistency and
lack of suitable correlations between legacy and modern systems.
One main solution is to transfer the local databases into a global one.
In this regards we need to extract the data structures from the legacy
systems and integrate them with the new technology systems. In
legacy systems, huge amounts of a data are stored in legacy
databases. They require particular attention since they need more
efforts to be normalized, reformatted and moved to the modern
database environments. Designing the new integrated (global)
database architecture and applying the reverse engineering requires
data normalization. This paper proposes the use of database reverse
engineering in order to integrate legacy and modern databases in
organizations. The suggested approach consists of methods and
techniques for generating data transformation rules needed for the
data structure normalization.

Keywords—Reverse Engineering, Database Integration, System
Integration, Data Structure Normalization

I. INTRODUCTION
OWADAYS integrated information systems are the
necessity of the most organizations. The problem of

integrating disparate information systems has been
investigated in many research works [8, 19, 20, 22]. Many
previous local applications in the organization will need to
operate on the new integrated database. Integration of a given
set of local databases into one global schema raises multiple
challenges. This is due to various kinds of semantic
incompatibilities and data inconsistencies that we will
describe in the next section. Different database researches
discuss various solutions for solving the problem of
integrating systems [8, 19, 20]. In this paper we discuss not
only integrating current databases but also the integration of
legacy systems with the modern systems. In this method
database reverse engineering (DBRE) is used as a part of local

Mohammad Reza Abbasifard is member of the Database Research Group,
Faculty of Electrical and Computer Engineering School of Engineering,
University of Tehran, Tehran, Iran (e-mail: m.abbasifard@ece.ut.ac.ir).

Masoud Rahgozar is member of the Control and Intelligent Processing
Center of Excellence, Faculty of Electrical and Computer Engineering School
of Engineering, University of Tehran, Tehran, Iran (e-mail:
rahgozar@ut.ac.ir).

Ashkan Bayati is member of the Database Research Group Faculty of
Electrical and Computer Engineering School of Engineering, University of
Tehran, Tehran, Iran (e-mail: ashkanb@uisco.net).

Parisa Pournemati, Alzahra University, Tehran, Iran (e-mail:
p_pournemati@alzahra.ac.ir)

applications reverse engineering. The purpose of DBRE is
extracting data structure information by paying attention to
existing applications database schema and programs source
codes [4].

A large number of existing applications are running on mini
and mainframe platforms [1]. These systems need to be able to
evolve to new technology environments. That is why we focus
mostly on DBRE in these environments [13]. Many works
have been done about schema extraction from source code,
but there has been limited research works on reverse
engineering of legacy data files [10, 11, 12, 14, 15, 17, 18].

In legacy systems, most of the data are stored in indexed
data files. Examples of such indices are VSAM, ISAM, etc.
The semantics used for such data files is not suitable for
relational database environment. That means, such files
require particular attention and effort to be normalized,
reformatted and moved to the modern database environments.

To design integrated (global) database architecture we need
to apply reverse engineering for data normalization. The
suggested approach of this paper presents a method for data
structure normalization along with data transformation rules.
In this approach the data structure is first extracted from the
program source code, it is normalized and then the data
transformation rules are generated. We also propose a
mechanism to extract some of our rules from data. An
example of such rules is determining the foreign key, relations
among tables, etc. The normalization process should be done
through interactions with a database design expert. The
normalization of legacy data is the prerequisite for sharing and
development of an integrated information system. In
normalizing the legacy data, transformations such as splitting,
merging and/or adding new items may be needed. There are
cases that splitting, merging, and joining of the tables, in
addition to the items, may be necessary.

The rest of this paper is organized as follows. Section 2
introduces database integration. In section 3 we discuss the
fundamentals to database reverse engineering which consists
of data structure extraction and normalization, and finally the
paper ends with conclusion and recommending further works
in section 4.

II. DATABASE INTEGRATION
In this section we initially discuss some of the
incompatibilities that may exist between two different
database schemata.

Using Automated Database Reverse
Engineering for Database Integration

M. R. Abbasifard, M. Rahgozar, A. Bayati and P. Pournemati

N

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2389International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

33
7.

pd
f

1) Semantic incompatibilities [8]
• Naming Conflicts: In any data model, the schemata

incorporate names for various entities/objects
represented by them. Since these schemata are
designed independently, the designer of each schema
uses his or her own vocabulary to name these objects.
Objects in different schemata representing the same
real world concept may contain dissimilar names.
Resulting in problems of two types:

- Homonyms: This inconsistency arises when the same
name is used for two different concepts.

- Synonyms: This type of naming conflict arises when
the same concept is identified by two or more names.

Note that homonyms and synonyms can only be detected
by external specification.

• Type Conflicts: These conflicts arise when the same

concept is represented by different coding constructs
in different schemata.

• Key Conflicts: Different keys may be assigned to the
same concept in different schemata.

• Behavioral Conflicts: These conflicts arise when
different insertion/deletion policies are associated
with the same class of objects in different schemata.

• Missing Data: Different attributes may be defined for
the same concept in different schemata.

• Levels of Abstraction: This incompatibility is
encountered when information about an entity is
stored at dissimilar levels of detail in two databases.

• Identification of Related Concepts: For concepts in
the component schemata that are not the same but are
related, one needs to discover all the inter-schema
properties that relate to them.

• Scaling Conflicts: This incompatibility arises when
the same attribute of an entity is stored in dissimilar
units in different databases.

2) Quantitative Data Incompatibilities [8]
Data retrieved from two local databases for the same logical

data item may be incompatible for the following reasons:
• Different Levels of Accuracy: Different databases

may be storing an attribute at dissimilar levels of
accuracy.

• Asynchronous Updates: Since each database is
managed independently, all databases may not update
the value simultaneously.

• Lack of Security: Due to lack of information security
at component databases, unauthorized users may
have changed the data.

Addressing all such incompatibilities is a part of DBRE and
the normalization process (Fig. 1). By using this process a
new global database is created that will contains the
information coming from legacy systems. So we would not
need to keep the data redundantly in two environments.

For accessing data new programs are directly connected to
this database. Legacy applications use legacy views in the new

database with the help of legacy data access interfaces
(wrapper). Fig. 2 illustrates this. The structure and logic of
legacy programs is strongly tied to the legacy data access
logic. The implementation or structure of the legacy data is
mostly navigational or hierarchical and the logic of the legacy
programs has been built around this structure. The simplistic
approach of replacing isolated legacy data access statements
by equivalent SQL statements will lead to significant and
prohibitive performance degradation. An effective
transformation of the legacy data access logic to the relational
data access logic is not linear. Therefore the legacy data
access logic should be considered as a whole and managed
through a specialized data access interface. The main
objective of creating the “Data Access Mapping Interfaces” is
to avoid any alteration in the legacy data access logic in the
programs.

Fig. 1 Legacy Databases and files Integration Process

Fig. 2 The application of integrated databases in legacy systems and
new systems

III. DATABASE REVERSE ENGINEERING
Many research works emphasize on reverse engineering of

relational databases (Fig. 3) [2]. Surprisingly, the most
important needs expressed by the industry and the
administrations concern IMS, COBOL and CODASYL legacy
systems [2].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2390International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

33
7.

pd
f

17%

13%

3%

10%

52%

5%

Files

Hierarchical

Shallow

Netw ork

Relational

OO

Fig. 3 Distribution of selected research publications according to the

DMS model [2]

In our approach DBRE consists of building up the physical,

logical and conceptual definitions of the old information
system and then mapping the legacy data to the new
information system schema. Reverse Engineering (RE) a piece
of software consists, among others, in recovering or
reconstructing its functional and technical specifications,
starting mainly from the source text of the programs [5, 6].

In information systems, applications whose central
component is a database or a set of permanent files, the
complexity can be broken down by considering that the files
or databases can be reverse engineered (almost)
independently. In these systems, the semantic distance
between the so-called conceptual specifications and the
physical implementation is most often narrower for data than
for procedural parts (a COBOL file structure is easier to
understand than a COBOL procedure) [2].

Database reverse engineering is a suitable solution for
recovering and integrating legacy databases and files. DBRE
process is a part of software engineering and in reverse of
Database Forward Engineering (DBFE) process. These
processes can be shown using the following functions [2, 3]:

ts)Requiremenn Informatio (Users DBFE Schema Executable =

DBRE=DBFE-1

semantics)domain schema, e(Executabl DBRE Schema Conceptual =

Our model, as illustrated in fig. 4, uses reverse engineering

methodologies [2] along with focusing efforts on data
structure extraction and normalization. The following
subsections (3.A and 3.B) will introduce a method for rule
mining. The normalization method is introduced in Subsection
3.C.

Fig. 4 Database Reverse Engineering & Normalization Process

A. Data Structure Extraction
In this section we describe how to recover the complete

Database schema, including all the implicit and explicit
structure and constraints. Real database systems generally
supply a description of their schema in some readable and
process able form. The problem is more complex for standard
files, since in many cases they lack a Clear description of their
structure. Analysis of many source programs provides a
partial view of the file and record structure only. For most
real-world applications, this analysis must go well beyond the
mere detection of the record structures declared in the
programs [9].

Legacy data and source codes contain the data structure that
is used in the DBRE process. Legacy codes that do not have
complete semantic information are imported to the new
environment directly. In the next step, format of legacy data is
changed and migrated to new environment. In this step, the
available data structure is extracted from the source code via
an automatic tool. The tool allows for refinement and cleaning
of the data structure. After refinement and cleaning we are left
with a data structure. The data structure helps to generate rules
for extracting the legacy data.

The next sections describe schema extraction by rule
mining, schema refinement and schema cleaning, which are
parts of the data structure extraction process. The schema
extraction by rule mining idea mentioned in this paper is used
to improve schema extraction and to find the relations among
extracted tables. To the best of our knowledge this idea has
not been mentioned in any of the previous works in literature.

1) Schema refinement
The schema refinement process is a complex task through

which various information sources are searched for evidence
of implicit or lost constructs. The explicit physical schema
obtained so far is enriched with these constructs, thus leading

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2391International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

33
7.

pd
f

to the complete physical schema. The complexity of the
process mainly lies in the variety and in the complexity of the
information sources. Indeed the implicit constraints are
hidden, among others, such as in procedural sections in the
application programs, JCL scripts, GUI procedures, screens,
forms and reports, triggers and stored procedures. To perform
reverse engineering of one application, usually more than one
of those potential sources of information need to be analyzed
and for each one there exists more than one way to express a
constraint. For example, in a COBOL program there are at
least six different ways to validate a reference constraint. In
addition, the non encoded part of the system must be analyzed
as well because it can provide evidence for lost constructs.
This part includes file contents (the data), existing
documentation, experimentation (execution of the program),
user and programmer interviews as well as the environment
behavior. Environment’s behavior is the constraint that is
enforced by the environment of the application. For example,
the list of the customers is provided by another application
that verifies all the constraints and thus the current application
does not validate that the customer number is a unique
identifier. So it is impossible to discover the identifier of the
customer by the analysis of the current application [2, 3, and
9].

2) Schema cleaning
This process transforms the complete physical schema into

a complete logical schema by removing or transforming all the
physical constructs into logical ones. All the physical
constructs can be discarded at this point because they do not
provide any information about the database’s logical structure.
These constructs were useful for technical reasons such as
optimizing the performance of the database or to implement
access mechanisms [2, 3].

B. Schema Extraction by Rule Mining
To the best of our knowledge all previous works in

literature have done very little research on extracting the rules
from the legacy data. Where as, such legacy data contains
vital information about the rules that can be retrieved
implicitly. Our proposal is to use the legacy data in order to
extract a more complete rule. From the legacy data we can
extract rules such as primary key, foreign key, relations
among tables etc. The following examples will further
illustrate this point:

1) Example 1 (Foreign key extraction):
Assume we have two tables, A and B, where the fields are

defined in both. As well the primary key of A is also defined.
To find the foreign key of table B, we only consider fields, in
B, that are same type as the primary key in A as candidates of
foreign keys. From the candidates retrieved we determine the
foreign key of table B, by choosing the field(s) where their
values are repeated as primary key in A. The following
equation determines the above explained:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⇒∈∀

=
=

)()(
),()(

keyForeign
A TableB Table

B TableA Table
B Table PKValuesVFKValuesV

FKTypePKType

2) Example 2 (Relations among Tables):

Assume, using the above method, we determined the
foreign key in table B. Given the primary key in A we want to
determine the relations among tables A and B. If the values in
our foreign key are unique we can find determine the relation
among table A and B to be one-to-one, else the relation is one-
to-many. The following equation determines the above
explained:

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

↔=⇒≠≠∀

↔=⇒=≠∀

∈∀

=

jji

ji

BTable
ji

BTableATableBAlationVVji

BTableATableBAlationVVji

FKVVji

BTableATablelation

;),(Re;

),(Re;

,,;,

),(Re

11

*1

C. Data Structure Normalization
The next process is the normalization of the extracted

structures. It is necessary to use normalization process to
better integrate the legacy databases files. Legacy data
normalization is a prerequisite for sharing and extending of
the unified Information System.

As mentioned before, for many legacy systems the data
stored in indexed files are at least as important as those stored
in database tables. They need particular attention because they
need more normalization along with the need to be
reformatted and moved to relational data bases. In an ideal
information system schema’s data needs to be stored in a
unified and integrated format. The following guidelines
should be considered when data is to be normalized and
imported into an integrated database [1,7]:

• The indexed files are going to be evolved to a RDBMS
environment,

• Their definitions are to be evolved to a normalized
model,

• They are to be integrated again into the legacy
programs environment,

• The legacy programs codes (i.e. their structures and
data access logics) are to be fully respected,

• The same data is going to be shared with future
applications using new technology tools.

Reverse engineering the procedural part of an application is
much easier when the semantic structure of the data has been
elicited [7]. For most legacy information systems, the
conceptual and logical designs of the legacy indexed files are
rather poor [16]. In this step because of insufficient semantic
data in extracted legacy codes, the need to define new data for
new database and the lack of automation it is necessary to use
an expert(s). In order for the expert to determine a more
complete semantics easier resources such as documents,
interview with employees of organization, forms, reports and
even various experiments are used. The design of legacy data
needs significant changes in order to be converted to RDBMS
environment and fully normalized. Legacy data normalization

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2392International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

33
7.

pd
f

is a prerequisite for sharing and extending of the unified
Information System. This includes many topics to deal with,
such as, splitting, atomizing or adding new data items or
splitting, joining and merging of the tables.

Then above mentioned tool gives the necessary
information, with which we can automatically define new
rules. These new rules help in normalizing the data. It should
be mentioned that the whole processes performed in the
normalization step is saved for future use.

After normalization we reach the new logical schema level,
a prerequisite for the forward engineering process, name
processing should be performed.

1) Name processing
Name processing consists in changing names to make them

more expressive and /or standardized. The name of the objects
are the names given by the programmers (as recovered during
data structure extraction), who have used some naming rules.
Now the names can be changed to give more information on
the named objects:

a) Remove common prefixes
A common naming conversion in COBOL consists in

prefixing each attribute name by the name (or a short name) of
the entity type. This is useful in large programs to ensure the
uniqueness of the attribute names. Those prefixes do not give
any information, so that they can be removed.

b) Meaningful name
The names of the collections are more meaningful than the

corresponding entity types names, so that the entity types
name can be replaced by the collections name.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we describe an approach for automated DBRE

and data normalization for integrating systems. Reaching an
integrated database for organizations is highly precious. Local
schemata need to be completely normalized during their
integration in a global schema. In our approach we focus
deeply on this normalization process. The suggested model
provides a schema with complete semantics of legacy
databases. This model is also very flexible. Along with
normalization process we determine constraint rules, such as
foreign key and primary key, by observing patterns in data.

Future works will include completing and improving
theories and solutions to perform automated DBRE process.

ACKNOWLEDGEMENTS
This work is supported by grants from TAKFA (National
Information and Communication Technology Agenda; High
Council of Informatics; Iran). We would like to thank Pouyesh
Bargh Co. about preparing test platform for our work.

REFERENCES
[1] Rahgozar M., Oroumchian F., An effective strategy for legacy systems

evolution. Journal of Software Maintenance & Evolution. Issue 5,
Volume 15,September 2003.

[2] Jean-Luc Hainaut, Introduction to Database Reverse Engineering. LIBD-
Laboratory of Database Application Engineering Institut d’Informatique
- University of Namur; May 2002.

[3] Jean Henrard, Program understanding in Database Reverse Engineering.
Thesis Submitted for the degree of Doctor of Science , University of
Namur– belgique; August 2003.

[4] Xiaomin Wu, Murray A., Storey M.-A., Lintern R., A reverse
engineering approach to support software maintenance. version control
knowledge extraction, Proceedings. 11th Working Conference on8-12
Nov. 2004.

[5] Chikofski E., Cross J., Reverse Engineering and design recovery:A
taxonomy. IEEE Software, Jan. 1990.

[6] Special issue on Reverse Engineering. IEEE Software, January, 1990.
[7] Rahgozar M., Oroumchian F., Migrating Legacy Indexed Files to Unix-

RDBMS environment. Journal of Software Maintenance & Evolution.
sept. 2003.

[8] M.P. Reddy, B.E. Prasad, P.G. Reddy,Amar Gupta. A Methodology for
Integration of Heterogeneous Databases. IEEE Transactions on
knowledge and data engineering. Vol 6 . No. 6. Dec 1994.

[9] J-L. Hainaut, J-M.Hick, J.Henrard, D.Roland, V.Englebert, Knowledge
Transfer in Database Reverse Engineering A Supporting Case Study.
Institut d'Informatique,University of Namur, rue Grandgagnage,21 – B-
5000 Namur; IEEE 1997.

[10] Casanova M., Amarel de Sa., Designing Entity Relationship Schemas for
Conventional Information Systems. in Proc. of Entity-Relationship
Approach, pp. 265-278, 1983.

[11] Casanova M., Amaral De Sa., Mapping uninterpreted Schemes into
Entity-Relationship diagrams, two applications to conceptual schema
design. IBM J. Res. & Dev., Vol. 28, No1, 1984.

[12] Nilsson E., G., The Translation of COBOL Data Structure to an Entity-
Rel-type Conceptual Schema. Proceedings of ERA Conference,
IEEE/North-Holland 1985.

[13] Rahgozar M., Oroumchian F., Automatic Evolution of of Legacy Data
Objects. WSEAS Int. Conf. on Applied Math.& Comp. Science
(AMCOS’02), Rio De Janeiro, Oct. ,2002.

[14] Davis K., Arora A., A Methodology for Translating a Conventional File
System into an Entity-Relationship Model. Proceedings of ERA,
IEEE/North-Holland 1985.

[15] Sabanis N., Stevenson N., Tools and Techniques for Data Remodelling
Cobol Applications. Proceedings of the 5th International Conference on
Software Engineering and Applications, Toulouse, 7-11 December, pp.
517-529, EC2 Publish 1992.

[16] Blaha M.R., Premerlani W., Observed Idiosyncrasies of Relational
Database designs. in Proc. of the 2nd IEEE Working Conference on
Reverse Engineering, Toronto, IEEE Computer Society Press, July 1995.

[17] Hainaut Jean-Luc, Chandelon M., Tonneau C., Joris M.,
Transformational techniques for database reverse engineering,
Proceedings of the 12th International Conference on ER Approach,
Arlington-Dallas, E/R Institute and Springer-Verlag, LNCS 1993.

[18] Edwards H. M., Munro M., Deriving a Logical Model for a System
Using Recast Method. Proceedings of the 2nd IEEE WC on Reverse
Engineering, Toronto, IEEE Computer Society Press 1995.

[19] C. Batini, M. Lenzerini, A methodology for database schema integration
in the entity relationship model. IEEE Trans. Software Eng. vol. SE-10,
no. 6, 1984.

[20] D. M. Dilts, W. Wu, Using knowledge-based technology to integrate
CIM databases. IEEE Trans. Knowledge Data Eng., vol. 3, no. 2, June
1991.

[21] Jeong-Mi Kim, JuHum Kwon, Doo-Kwon Baik, RGSN Model for
Database Integration. International Conference on Information Systems,
2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2393International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

33
7.

pd
f

