Search results for: Automated analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8845

Search results for: Automated analysis

8725 Sperm Identification Using Elliptic Model and Tail Detection

Authors: Vahid Reza Nafisi, Mohammad Hasan Moradi, Mohammad Hosain Nasr-Esfahani

Abstract:

The conventional assessment of human semen is a highly subjective assessment, with considerable intra- and interlaboratory variability. Computer-Assisted Sperm Analysis (CASA) systems provide a rapid and automated assessment of the sperm characteristics, together with improved standardization and quality control. However, the outcome of CASA systems is sensitive to the method of experimentation. While conventional CASA systems use digital microscopes with phase-contrast accessories, producing higher contrast images, we have used raw semen samples (no staining materials) and a regular light microscope, with a digital camera directly attached to its eyepiece, to insure cost benefits and simple assembling of the system. However, since the accurate finding of sperms in the semen image is the first step in the examination and analysis of the semen, any error in this step can affect the outcome of the analysis. This article introduces and explains an algorithm for finding sperms in low contrast images: First, an image enhancement algorithm is applied to remove extra particles from the image. Then, the foreground particles (including sperms and round cells) are segmented form the background. Finally, based on certain features and criteria, sperms are separated from other cells.

Keywords: Computer-Assisted Sperm Analysis (CASA), Sperm identification, Tail detection, Elliptic shape model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
8724 Quantifying the Stability of Software Systems via Simulation in Dependency Networks

Authors: Weifeng Pan

Abstract:

The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.

Keywords: Software stability, change propagation, design pattern, software maintenance, object-oriented (OO) software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
8723 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan

Abstract:

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
8722 Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels

Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos

Abstract:

Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method.

Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
8721 An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

Authors: T. K. Mondal, N C Shivaprakash

Abstract:

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Keywords: double stage crystallization, Phase transition, Quasi hydrostatic, Rigidity percolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
8720 Testing Object-Oriented Framework Applications Using FIST2 Tool: A Case Study

Authors: Jehad Al Dallal

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Frameworks are introduced to reduce the cost of a product line (i.e., a family of products that shares the common features). Software testing is a timeconsuming and costly ongoing activity during the application software development process. Generating reusable test cases for the framework applications during the framework development stage, and providing and using the test cases to test part of the framework application whenever the framework is used reduces the application development time and cost considerably. This paper introduces the Framework Interface State Transition Tester (FIST2), a tool for automated unit testing of Java framework applications. During the framework development stage, given the formal descriptions of the framework hooks, the specifications of the methods of the framework-s extensible classes, and the illegal behavior description of the Framework Interface Classes (FICs), FIST2 generates unitlevel test cases for the classes. At the framework application development stage, given the customized method specifications of the implemented FICs, FIST2 automates the use, execution, and evaluation of the already generated test cases to test the implemented FICs. The paper illustrates the use of the FIST2 tool for testing several applications that use the SalesPoint framework.

Keywords: Automated testing, class testing, FICs, FIST2, object-oriented framework, object-oriented testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
8719 Role of GIS in Distribution Power Systems

Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam

Abstract:

With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.

Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5449
8718 Evaluating 8D Reports Using Text-Mining

Authors: Benjamin Kuester, Bjoern Eilert, Malte Stonis, Ludger Overmeyer

Abstract:

Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term.

Keywords: 8D report, complaint management, evaluation system, text-mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
8717 The Automated Soil Erosion Monitoring System (ASEMS)

Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos

Abstract:

The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature, and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of a new innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholders and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.

Keywords: Soil management, climate change, new technologies, conservation practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
8716 Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques

Authors: H. Elbehiery, A. Hefnawy, M. Elewa

Abstract:

Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.

Keywords: Quality control, Defects detection, Visual control, Image processing, Morphological operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6560
8715 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
8714 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
8713 Impact of Faults in Different Software Systems: A Survey

Authors: Neeraj Mohan, Parvinder S. Sandhu, Hardeep Singh

Abstract:

Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.

Keywords: Fault prediction, Software Maintenance, Automated Fault Prediction, and Failure Mode Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
8712 An Automated Test Setup for the Characterization of Antenna in CATR

Authors: Faisal Amin, Abdul Mueed, Xu Jiadong

Abstract:

This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.

Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
8711 Intelligent Control of Robotized Workcell by Augmented Reality Application

Authors: L. Novakova-Marcincinova, J. Novak-Marcincin, M. Janak

Abstract:

The computer aided for design, analysis, control, visualization and simulation of robotized workcells is very interesting in this time. Computer Aided Robot Control (CARC) is a subsystem of the system CIM including the computer aided systems of all activities connected with visualization and working of robotized workcells. There are three basic ideas: current CAD/CAM/CAE systems for design and 3D visualization, special PC based control and simulation systems and Augmented Reality Aided Manufacturing (ARAM) systems. This paper describes example of Open Source software application that can to be utilized at planning of the robotized workcells, visualization and off-line programming the automated processes realized by authors.

Keywords: Intelligent control, augmented reality, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
8710 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
8709 Experimentation on Piercing with Abrasive Waterjet

Authors: Johan Fredin, Anders Jönsson

Abstract:

Abrasive waterjet cutting (AWJ) is a highly efficient method for cutting almost any type of material. When holes shall be cut the waterjet first needs to pierce the material.This paper presents a vast experimental analysis of piercing parameters effect on piercing time. Results from experimentation on feed rates, work piece thicknesses, abrasive flow rates, standoff distances and water pressure are also presented as well as studies on three methods for dynamic piercing. It is shown that a large amount of time and resources can be saved by choosing the piercing parameters in a correct way. The large number of experiments puts demands on the experimental setup. An automated experimental setup including piercing detection is presented to enable large series of experiments to be carried out efficiently.

Keywords: Waterjet cutting, Piercing, Experimentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
8708 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose

Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky

Abstract:

Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.

Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
8707 Validation of Automation Systems using Temporal Logic Model Checking and Groebner Bases

Authors: Quoc-Nam Tran, Anjib Mulepati

Abstract:

Validation of an automation system is an important issue. The goal is to check if the system under investigation, modeled by a Petri net, never enters the undesired states. Usually, tools dedicated to Petri nets such as DESIGN/CPN are used to make reachability analysis. The biggest problem with this approach is that it is impossible to generate the full occurence graph of the system because it is too large. In this paper, we show how computational methods such as temporal logic model checking and Groebner bases can be used to verify the correctness of the design of an automation system. We report our experimental results with two automation systems: the Automated Guided Vehicle (AGV) system and the traffic light system. Validation of these two systems ranged from 10 to 30 seconds on a PC depending on the optimizing parameters.

Keywords: Computational Intelligence, Temporal Logic Reasoning, Model Checking, Groebner Bases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
8706 An Evaluation of the Usability of IT Faculty Educational Portal at University of Benghazi

Authors: Nasser M. Amaitik, Mohammed J. El-Sahli

Abstract:

Evaluation of educational portals is an important subject area that needs more attention from researchers. A university that has an educational portal which is difficult to use and interact by teachers or students or management staff can reduce the position and reputation of the university. Therefore, it is important to have the ability to make an evaluation of the quality of e-services the university provide to improve them over time. The present study evaluates the usability of the Information Technology Faculty portal at University of Benghazi. Two evaluation methods were used: a questionnaire-based method and an online automated tool-based method. The first method was used to measure the portal's external attributes of usability (Information, Content and Organization of the portal, Navigation, Links and Accessibility, Aesthetic and Visual Appeal, Performance and Effectiveness and educational purpose) from users' perspectives, while the second method was used to measure the portal's internal attributes of usability (number and size of HTML files, number and size of images, load time, HTML check errors, browsers compatibility problems, number of bad and broken links), which cannot be perceived by the users. The study showed that some of the usability aspects have been found at the acceptable level of performance and quality, and some others have been found otherwise. In general, it was concluded that the usability of IT faculty educational portal generally acceptable. Recommendations and suggestions to improve the weakness and quality of the portal usability are presented in this study.

Keywords: Automated tools-based evaluation, Educational portals, Evaluation criteria, Questionnaire-based evaluation, Usability evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
8705 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482
8704 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: Bias, expert, high risk industry, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
8703 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
8702 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
8701 Fusion of Shape and Texture for Unconstrained Periocular Authentication

Authors: D. R. Ambika, K. R. Radhika, D. Seshachalam

Abstract:

Unconstrained authentication is an important component for personal automated systems and human-computer interfaces. Existing solutions mostly use face as the primary object of analysis. The performance of face-based systems is largely determined by the extent of deformation caused in the facial region and amount of useful information available in occluded face images. Periocular region is a useful portion of face with discriminative ability coupled with resistance to deformation. A reliable portion of periocular area is available for occluded images. The present work demonstrates that joint representation of periocular texture and periocular structure provides an effective expression and poses invariant representation. The proposed methodology provides an effective and compact description of periocular texture and shape. The method is tested over four benchmark datasets exhibiting varied acquisition conditions.

Keywords: Periocular authentication, Zernike moments, LBPV, shape and texture fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
8700 General Process Control for Intelligent Systems

Authors: Radovan Holubek, Matus Vlasek, Peter Kostal

Abstract:

Development of intelligent assembly cell conception includes new solution kind of how to create structures of automated and flexible assembly system. The current trend of the final product quality increasing is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. Intelligent behavior of the system as the control system will repose on monitoring of important parameters of the system in the real time. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.

Keywords: Control system, intelligent manufacturing / assemble systems, manufacturing, monitoring process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
8699 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
8698 Development and Optimization of Automated Dry-Wafer Separation

Authors: Tim Giesen, Christian Fischmann, Fabian Böttinger, Alexander Ehm, Alexander Verl

Abstract:

In a state-of-the-art industrial production line of photovoltaic products the handling and automation processes are of particular importance and implication. While processing a fully functional crystalline solar cell an as-cut photovoltaic wafer is subject to numerous repeated handling steps. With respect to stronger requirements in productivity and decreasing rejections due to defects the mechanical stress on the thin wafers has to be reduced to a minimum as the fragility increases by decreasing wafer thicknesses. In relation to the increasing wafer fragility, researches at the Fraunhofer Institutes IPA and CSP showed a negative correlation between multiple handling processes and the wafer integrity. Recent work therefore focused on the analysis and optimization of the dry wafer stack separation process with compressed air. The achievement of a wafer sensitive process capability and a high production throughput rate is the basic motivation in this research.

Keywords: Automation, Photovoltaic Manufacturing, Thin Wafer, Material Handling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
8697 FEM and Experimental Modal Analysis of Computer Mount

Authors: Vishwajit M. Ghatge, David Looper

Abstract:

Over the last few decades, oilfield service rolling equipment has significantly increased in weight, primarily because of emissions regulations, which require larger/heavier engines, larger cooling systems, and emissions after-treatment systems, in some cases, etc. Larger engines cause more vibration and shock loads, leading to failure of electronics and control systems. If the vibrating frequency of the engine matches the system frequency, high resonance is observed on structural parts and mounts. One such existing automated control equipment system comprising wire rope mounts used for mounting computers was designed approximately 12 years ago. This includes the use of an industrialgrade computer to control the system operation. The original computer had a smaller, lighter enclosure. After a few years, a newer computer version was introduced, which was 10 lbm heavier. Some failures of internal computer parts have been documented for cases in which the old mounts were used. Because of the added weight, there is a possibility of having the two brackets impact each other under off-road conditions, which causes a high shock input to the computer parts. This added failure mode requires validating the existing mount design to suit the new heavy-weight computer. This paper discusses the modal finite element method (FEM) analysis and experimental modal analysis conducted to study the effects of vibration on the wire rope mounts and the computer. The existing mount was modelled in ANSYS software, and resultant mode shapes and frequencies were obtained. The experimental modal analysis was conducted, and actual frequency responses were observed and recorded. Results clearly revealed that at resonance frequency, the brackets were colliding and potentially causing damage to computer parts. To solve this issue, spring mounts of different stiffness were modeled in ANSYS software, and the resonant frequency was determined. Increasing the stiffness of the system increased the resonant frequency zone away from the frequency window at which the engine showed heavy vibrations or resonance. After multiple iterations in ANSYS software, the stiffness of the spring mount was finalized, which was again experimentally validated.

Keywords: Experimental Modal Analysis, FEM Modal Analysis, Frequency, Modal Analysis, Resonance, Vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
8696 Hot-Spot Blob Merging for Real-Time Image Segmentation

Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda

Abstract:

One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.

Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461