Search results for: Analysis of Variance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8844

Search results for: Analysis of Variance

8844 A Robust Controller for Output Variance Reduction and Minimum Variance with Application on a Permanent Field DC-Motor

Authors: Mahmood M. Al-Imam, M. Mustafa

Abstract:

In this paper, we present an experimental testing for a new algorithm that determines an optimal controller-s coefficients for output variance reduction related to Linear Time Invariant (LTI) Systems. The algorithm features simplicity in calculation, generalization to minimal and non-minimal phase systems, and could be configured to achieve reference tracking as well as variance reduction after compromising with the output variance. An experiment of DCmotor velocity control demonstrates the application of this new algorithm in designing the controller. The results show that the controller achieves minimum variance and reference tracking for a preset velocity reference relying on an identified model of the motor.

Keywords: Output variance, minimum variance, overparameterization, DC-Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
8843 Variance Based Component Analysis for Texture Segmentation

Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei

Abstract:

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Keywords: Principal Component Analysis; Variance Based Component Analysis; Defect Detection; Texture Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
8842 Distribution Sampling of Vector Variance without Duplications

Authors: Erna T. Herdiani, Maman A. Djauhari

Abstract:

In recent years, the use of vector variance as a measure of multivariate variability has received much attention in wide range of statistics. This paper deals with a more economic measure of multivariate variability, defined as vector variance minus all duplication elements. For high dimensional data, this will increase the computational efficiency almost 50 % compared to the original vector variance. Its sampling distribution will be investigated to make its applications possible.

Keywords: Asymptotic distribution, covariance matrix, likelihood ratio test, vector variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
8841 Efficient Frontier - Comparing Different Volatility Estimators

Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković

Abstract:

Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.

Keywords: Variance, lower semi-variance, range-based volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
8840 Wafer Fab Operational Cost Monitoring and Controlling with Cost per Equivalent Wafer Out

Authors: Ian Kree, Davina Chin Lee Yien

Abstract:

This paper presents Cost per Equivalent Wafer Out, which we find useful in wafer fab operational cost monitoring and controlling. It removes the loading and product mix effect in the cost variance analysis. The operation heads, therefore, could immediately focus on identifying areas for cost improvement. Without this, they would have to measure the impact of the loading variance and product mix variance between actual and budgeted prior to make any decision on cost improvement. Cost per Equivalent Wafer Out, thereby, increases efficiency in wafer fab operational cost monitoring and controlling.

Keywords: Cost Control, Cost Variance, Operational Expenditure, Semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
8839 Multivariate Statistical Analysis of Decathlon Performance Results in Olympic Athletes (1988-2008)

Authors: Jaebum Park, Vladimir M. Zatsiorsky

Abstract:

The performance results of the athletes competed in the 1988-2008 Olympic Games were analyzed (n = 166). The data were obtained from the IAAF official protocols. In the principal component analysis, the first three principal components explained 70% of the total variance. In the 1st principal component (with 43.1% of total variance explained) the largest factor loadings were for 100m (0.89), 400m (0.81), 110m hurdle run (0.76), and long jump (–0.72). This factor can be interpreted as the 'sprinting performance'. The loadings on the 2nd factor (15.3% of the total variance) presented a counter-intuitive throwing-jumping combination: the highest loadings were for throwing events (javelin throwing 0.76; shot put 0.74; and discus throwing 0.73) and also for jumping events (high jump 0.62; pole vaulting 0.58). On the 3rd factor (11.6% of total variance), the largest loading was for 1500 m running (0.88); all other loadings were below 0.4.

Keywords: Decathlon, principal component analysis, Olympic Games, multivariate statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
8838 Identification of Roadway Wavelengths Affecting the Dynamic Responses of Bridges due to Vehicular Loading

Authors: Ghada Karaki

Abstract:

The bridge vibration due to traffic loading has been a subject of extensive research during the last decades. A number of these studies are concerned with the effects of the unevenness of roadways on the dynamic responses of highway bridges. The road unevenness is often described as a random process that constitutes of different wavelengths. Thus, the study focuses on examining the effects of the random description of roadways on the dynamic response and its variance. A new setting of variance based sensitivity analysis is proposed and used to identify and quantify the contributions of the roadway-s wavelengths to the variance of the dynamic response. Furthermore, the effect of the vehicle-s speed on the dynamic response is studied.

Keywords: vehicle bridge interaction, sensitivity analysis, road unevenness, random processes, critical speeds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
8837 Face Detection using Variance based Haar-Like feature and SVM

Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung

Abstract:

This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.

Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735
8836 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: Noise, signal-to-noise ratio, stochastic signals, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
8835 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

Authors: Gaoyong Luo

Abstract:

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
8834 Strategic Management Accounting: Implementation and Control

Authors: Alireza Azimi Sani

Abstract:

This paper discusses the design characteristics management accounting systems should have to be useful for strategic planning and control and provides brief introductions to strategic variance analysis, profit-linked performance measurement models and balanced scorecard. It shows two multi-period, multiproduct models are specified, can be related to Porter's strategy framework and cost and revenue drivers, and can be used to support strategic planning, control and cost management.

Keywords: Accounting, balanced scorecard, profit-linked, strategic management, variance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5021
8833 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
8832 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta

Abstract:

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
8831 The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions

Authors: Ali Bakhtiari Gharibdosti, Mohammad Hosein Bijeh Keshavarzi, Samira Alijani

Abstract:

To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions.

Keywords: Correlation, drought stress, factor analysis, rapeseed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
8830 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease

Authors: Elizabeth Stojanovski

Abstract:

Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.

Keywords: Random-effects, meta-analysis, Bayesian, variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
8829 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform

Authors: Celso A. G. Santos, Paula K. M. M. Freire

Abstract:

The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.

Keywords: rainfall data, urban center, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
8828 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
8827 Estimation of the Mean of the Selected Population

Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal

Abstract:

Two normal populations with different means and same variance are considered, where the variance is known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the mehod of Monte-Carlo simulation and their performances are analysed with the help of graphs.

Keywords: Estimation after selection, Brewster-Zidek technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
8826 Comparative Approach of Measuring Price Risk on Romanian and International Wheat Market

Authors: Larisa N. Pop, Irina M. Ban

Abstract:

This paper aims to present the main instruments used in the economic literature for measuring the price risk, pointing out on the advantages brought by the conditional variance in this respect. The theoretical approach will be exemplified by elaborating an EGARCH model for the price returns of wheat, both on Romanian and on international market. To our knowledge, no previous empirical research, either on price risk measurement for the Romanian markets or studies that use the ARIMA-EGARCH methodology, have been conducted. After estimating the corresponding models, the paper will compare the estimated conditional variance on the two markets.

Keywords: conditional variance, GARCH models, price risk, volatility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
8825 Improving Injection Moulding Processes Using Experimental Design

Authors: Yousef Amer, Mehdi Moayyedian, Zeinab Hajiabolhasani, Lida Moayyedian

Abstract:

Moulded parts contribute to more than 70% of components in products. However, common defects particularly in plastic injection moulding exist such as: warpage, shrinkage, sink marks, and weld lines. In this paper Taguchi experimental design methods are applied to reduce the warpage defect of thin plate Acrylonitrile Butadiene Styrene (ABS) and are demonstrated in two levels; namely, orthogonal arrays of Taguchi and the Analysis of Variance (ANOVA). Eight trials have been run in which the optimal parameters that can minimize the warpage defect in factorial experiment are obtained. The results obtained from ANOVA approach analysis with respect to those derived from MINITAB illustrate the most significant factors which may cause warpage in injection moulding process. Moreover, ANOVA approach in comparison with other approaches like S/N ratio is more accurate and with the interaction of factors it is possible to achieve higher and the better outcomes.

Keywords: Analysis of variance, ANOVA, plastic injection mould, Taguchi methods, Warpage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3896
8824 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method

Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra

Abstract:

This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.

Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
8823 Comparing Data Analysis, Communication and Information Technologies Expertise Levels in Undergraduate Psychology Students

Authors: Ana Cázares

Abstract:

Aims for this study: first, to compare the expertise level in data analysis, communication and information technologies in undergraduate psychology students. Second, to verify the factor structure of E-ETICA (Escala de Experticia en Tecnologias de la Informacion, la Comunicacion y el Análisis or Data Analysis, Communication and Information'Expertise Scale) which had shown an excellent internal consistency (α= 0.92) as well as a simple factor structure. Three factors, Complex, Basic Information and Communications Technologies and E-Searching and Download Abilities, explains 63% of variance. In the present study, 260 students (119 juniors and 141 seniors) were asked to respond to ETICA (16 items Likert scale of five points 1: null domain to 5: total domain). The results show that both junior and senior students report having very similar expertise level; however, E-ETICA presents a different factor structure for juniors and four factors explained also 63% of variance: Information E-Searching, Download and Process; Data analysis; Organization; and Communication technologies.

Keywords: Data analysis, Information, Communications Technologies, Expertise'Levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
8822 A New Approach for Prioritization of Failure Modes in Design FMEA using ANOVA

Authors: Sellappan Narayanagounder, Karuppusami Gurusami

Abstract:

The traditional Failure Mode and Effects Analysis (FMEA) uses Risk Priority Number (RPN) to evaluate the risk level of a component or process. The RPN index is determined by calculating the product of severity, occurrence and detection indexes. The most critically debated disadvantage of this approach is that various sets of these three indexes may produce an identical value of RPN. This research paper seeks to address the drawbacks in traditional FMEA and to propose a new approach to overcome these shortcomings. The Risk Priority Code (RPC) is used to prioritize failure modes, when two or more failure modes have the same RPN. A new method is proposed to prioritize failure modes, when there is a disagreement in ranking scale for severity, occurrence and detection. An Analysis of Variance (ANOVA) is used to compare means of RPN values. SPSS (Statistical Package for the Social Sciences) statistical analysis package is used to analyze the data. The results presented are based on two case studies. It is found that the proposed new methodology/approach resolves the limitations of traditional FMEA approach.

Keywords: Failure mode and effects analysis, Risk priority code, Critical failure mode, Analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5438
8821 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
8820 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: Temporal differencing, video summarization, histogram differencing, sum conditional variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
8819 Fuzzy Numbers and MCDM Methods for Portfolio Optimization

Authors: Thi T. Nguyen, Lee N. Gordon-Brown

Abstract:

A new deployment of the multiple criteria decision making (MCDM) techniques: the Simple Additive Weighting (SAW), and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for portfolio allocation, is demonstrated in this paper. Rather than exclusive reference to mean and variance as in the traditional mean-variance method, the criteria used in this demonstration are the first four moments of the portfolio distribution. Each asset is evaluated based on its marginal impacts to portfolio higher moments that are characterized by trapezoidal fuzzy numbers. Then centroid-based defuzzification is applied to convert fuzzy numbers to the crisp numbers by which SAW and TOPSIS can be deployed. Experimental results suggest the similar efficiency of these MCDM approaches to selecting dominant assets for an optimal portfolio under higher moments. The proposed approaches allow investors flexibly adjust their risk preferences regarding higher moments via different schemes adapting to various (from conservative to risky) kinds of investors. The other significant advantage is that, compared to the mean-variance analysis, the portfolio weights obtained by SAW and TOPSIS are consistently well-diversified.

Keywords: Fuzzy numbers, SAW, TOPSIS, portfolio optimization, higher moments, risk management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
8818 Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process

Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana

Abstract:

Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's post hoc test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with F-values (12.37 and 31.88) greater than Fcrit (6.94) in contrary to carbon dioxide emission (F-values of 1.23 and 3.12 were less than Fcrit).  Scheffe's post hoc test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission.

Keywords: Analysis of variance, carbon dioxide, carbon monoxide, photocopying indoor, Scheffe's test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
8817 New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller

Authors: S. A. Mohamed, A. S. Zayed, O. A. Abolaeha

Abstract:

A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.

Keywords: Pole-placement, Minimum variance control, self-tuning control and feedforward control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
8816 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Authors: Gholamhossein Hosseini

Abstract:

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Keywords: Cotton, combined, analysis, earliness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
8815 The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings

Authors: Mustafa Altin, Sakir Tasdemir, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Sevda Altin

Abstract:

In this study, an experiment was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally 81 samples which included 3 different wood species, 3 different sizes, 2 different fire retardants and 2 unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure.

Keywords: Resistance of wood against pressure, species of wood, variance analysis, wood coating, wood fire safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715