**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**3285

# Search results for: (2+1)-dimensional breaking solution equation

##### 3285 Some Exact Solutions of the (2+1)-Dimensional Breaking Soliton Equation using the Three-wave Method

**Authors:**
Mohammad Taghi Darvishi,
Mohammad Najafi

**Abstract:**

This paper considers the (2+1)-dimensional breaking soliton equation in its bilinear form. Some exact solutions to this equation are explicitly derived by the idea of three-wave solution method with the assistance of Maple. We can see that the new idea is very simple and straightforward.

**Keywords:**
Soliton solution,
computerized symbolic computation,
painleve analysis,
(2+1)-dimensional breaking soliton equation,
Hirota's bilinear form.

##### 3284 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

**Keywords:**
Exact solution,
The (3+1)-dimensional breaking soliton equation,
( G G )-expansion method,
Riccati equation,
Modified Fexpansion method.

##### 3283 New Exact Solutions for the (3+1)-Dimensional Breaking Soliton Equation

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this work, we obtain some analytic solutions for the (3+1)-dimensional breaking soliton after obtaining its Hirota-s bilinear form. Our calculations show that, three-wave method is very easy and straightforward to solve nonlinear partial differential equations.

**Keywords:**
(3+1)-dimensional breaking soliton equation,
Hirota'sbilinear form.

##### 3282 An Analytical Method for Solving General Riccati Equation

**Authors:**
Y. Pala,
M. O. Ertas

**Abstract:**

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

**Keywords:**
Riccati Equation,
ordinary differential equation,
nonlinear differential equation,
analytical solution,
proper solution.

##### 3281 Solution of The KdV Equation with Asymptotic Degeneracy

**Authors:**
Tapas Kumar Sinha,
Joseph Mathew

**Abstract:**

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

**Keywords:**
KdV equation,
Asymptotic Degeneracy,
Solitons,
Inverse Scattering

##### 3280 An Asymptotic Solution for the Free Boundary Parabolic Equations

**Authors:**
Hsuan-Ku Liu,
Ming Long Liu

**Abstract:**

In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.

**Keywords:**
Integral equation,
asymptotic solution,
free boundary problem,
American exchange option.

##### 3279 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability

**Authors:**
N. Kumaresan ,
J. Kavikumar,
Kuru Ratnavelu

**Abstract:**

**Keywords:**
Fuzzy differential equation,
Generalized differentiability,
H-difference and Simulink.

##### 3278 Numerical Solution of Manning's Equation in Rectangular Channels

**Authors:**
Abdulrahman Abdulrahman

**Abstract:**

**Keywords:**
Channel design,
civil engineering,
hydraulic engineering,
open channel flow,
Manning's equation,
normal depth,
uniform flow.

##### 3277 Using Hermite Function for Solving Thomas-Fermi Equation

**Authors:**
F. Bayatbabolghani,
K. Parand

**Abstract:**

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

**Keywords:**
Collocation method,
Hermite function,
Semi-infinite,
Thomas-Fermi equation.

##### 3276 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming

**Authors:**
N. Kumaresan,
J. Kavikumar,
M. Kumudthaa,
Kuru Ratnavelu

**Abstract:**

**Keywords:**
Fuzzy differential equation,
Generalized differentiability,
Genetic programming and H-difference.

##### 3275 Lagrangian Method for Solving Unsteady Gas Equation

**Authors:**
Amir Taghavi,
kourosh Parand,
Hosein Fani

**Abstract:**

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

**Keywords:**
Unsteady gas equation,
Generalized Laguerre functions,
Lagrangian method,
Nonlinear ODE.

##### 3274 Iterative solutions to the linear matrix equation AXB + CXTD = E

**Authors:**
Yongxin Yuan,
Jiashang Jiang

**Abstract:**

**Keywords:**
matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.

##### 3273 On the Approximate Solution of a Nonlinear Singular Integral Equation

**Authors:**
Nizami Mustafa,
C. Ardil

**Abstract:**

In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.

**Keywords:**
Approximate solution,
Fixed-point principle,
Nonlinear singular integral equations,
Vekua integral operator

##### 3272 On the Positive Definite Solutions of Nonlinear Matrix Equation

**Authors:**
Tian Baoguang,
Liang Chunyan,
Chen Nan

**Abstract:**

In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δ_{i} are discussed. An algorithm that avoids matrix inversion with the case -1<-δ_{i}<0 is proposed.

**Keywords:**
Nonlinear matrix equation,
Positive definite solution,
The maximal-minimal solution,
Iterative method,
Free-inversion

##### 3271 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream

**Authors:**
M. A. Koroma,
Z. Chuangyi,
A. F.,
Kamara,
A. M. H. Conteh

**Abstract:**

In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.

**Keywords:**
Modified Laplace decomposition algorithm,
Boundary
layer equation,
Padé approximant,
Numerical solution.

##### 3270 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation

**Authors:**
Minghui Wang,
Juntao Zhang

**Abstract:**

An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.

**Keywords:**
Inversion-free method,
Hermitian positive definite solution,
Maximal solution,
Convergence.

##### 3269 Solution of Density Dependent Nonlinear Reaction-Diffusion Equation Using Differential Quadrature Method

**Authors:**
Gülnihal Meral

**Abstract:**

**Keywords:**
Density Dependent Nonlinear Reaction-Diffusion Equation,
Differential Quadrature Method,
Implicit Euler Method.

##### 3268 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

**Authors:**
Hidetoshi Konno,
Akio Suzuki

**Abstract:**

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

**Keywords:**
Transient population dynamics,
Phase singularity,
Birth-death process,
Non-stationary Master equation,
nonlinear Langevin equation,
generalized Logistic equation.

##### 3267 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

**Authors:**
Fengxia Zheng

**Abstract:**

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

**Keywords:**
Fractional differential equation,
boundary value problem,
positive solution,
existence and uniqueness,
fixed point theorem,
mixed monotone operator.

##### 3266 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

**Authors:**
Emad K. Jaradat,
Ala’a Al-Faqih

**Abstract:**

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

**Keywords:**
Non-linear Schrodinger equation,
Elzaki decomposition method,
harmonic oscillator,
one and two- dimensional Schrodinger equation.

##### 3265 Wave Vortex Parameters as an Indicator of Breaking Intensity

**Authors:**
B. Robertson,
K. Hall

**Abstract:**

The study of the geometric shape of the plunging wave enclosed vortices as a possible indicator for the breaking intensity of ocean waves has been ongoing for almost 50 years with limited success. This paper investigates the validity of using the vortex ratio and vortex angle as methods of predicting breaking intensity. Previously published works on vortex parameters, based on regular wave flume results or solitary wave theory, present contradictory results and conclusions. Through the first complete analysis of field collected irregular wave breaking vortex parameters it is illustrated that the vortex ratio and vortex angle cannot be accurately predicted using standard breaking wave characteristics and hence are not suggested as a possible indicator for breaking intensity.

**Keywords:**
Breaking Wave Measurement,
Wave Vortex Parameters,
Analytical Techniques,
Ocean Remote Sensing.

##### 3264 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay

**Authors:**
Cemil Tunc

**Abstract:**

In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.

**Keywords:**
Instability,
Lyapunov-Krasovskii functional,
delay differential equation,
fifth order.

##### 3263 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation

**Authors:**
Fengxia Zheng,
Chuanyun Gu

**Abstract:**

**Keywords:**
Fractional differential equation,
Boundary value
problem,
Positive solution,
Existence and uniqueness,
Fixed point
theorem of a sum operator.

##### 3262 Iterative Solutions to Some Linear Matrix Equations

**Authors:**
Jiashang Jiang,
Hao Liu,
Yongxin Yuan

**Abstract:**

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

**Keywords:**
Matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.

##### 3261 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem

**Authors:**
Chuanyun Gu,
Shouming Zhong

**Abstract:**

In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.

**Keywords:**
Fractional differential equation,
Boundary value problem,
Positive solution,
Existence and uniqueness,
Fixed point theorem of a sum operator

##### 3260 On One Application of Hybrid Methods For Solving Volterra Integral Equations

**Authors:**
G.Mehdiyeva,
V.Ibrahimov,
M.Imanova

**Abstract:**

**Keywords:**
Volterra integral equation,
hybrid methods,
stability
and degree,
methods of quadrature

##### 3259 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

**Authors:**
Saeideh Hesam,
Alireza Nazemi,
Ahmad Haghbin

**Abstract:**

This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

**Keywords:**
Zakharov-Kuznetsov equation,
differential transform method,
closed form solution.

##### 3258 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation

**Authors:**
Sarun Phibanchon

**Abstract:**

The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.

**Keywords:**
soliton,
iterative method,
spectral method,
plasma

##### 3257 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions

**Authors:**
Chuanyun Gu

**Abstract:**

**Keywords:**
Fractional differential equation,
positive solution,
existence and uniqueness,
fixed point theorem,
generalized concave
and convex operator,
integral boundary conditions.

##### 3256 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

**Authors:**
Nik Mohd Asri Nik Long,
Koo Lee Feng,
Zainidin K. Eshkuvatov,
A. A. Khaldjigitov

**Abstract:**

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

**Keywords:**
Elliptical crack,
stress intensity factors,
hyper singular integral equation,
shear loading,
conformal mapping.