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Abstract—The approximate solution of a time-harmonic
electromagnetic scattering problem for inhomogeneous media is
required in several application contexts and its two-dimensional
formulation is a Fredholm integral equation of second kind. This
integral equation provides a formulation for the direct scattering
problem but has to be solved several times in the numerical solution
of the corresponding inverse scattering problem. The discretization of
this Fredholm equation produces large and dense linear systems that
are usually solved by iterative methods. To improve the efficiency of
these iterative methods, we use the Symmetric SOR preconditioning
and propose an algorithm to evaluate the associated relaxation
parameter. We show the efficiency of the proposed algorithm by
several numerical experiments, where we use two Krylov subspace
methods, i.e. Bi-CGSTAB and GMRES.
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I. INTRODUCTION

WE consider the numerical solution of the

Lippmann-Schwinger equation, see [10] for details.

This is a Fredholm integral equation of the second kind

resulting from electromagnetic scattering problems, whose

approximate solution is required in several application

contexts, see [16] for some examples. Hence, different

strategies for solving the Lippmann-Schwinger equation have

been studied [2]–[5], [7], [12].

Even if the considered integral equation provides a

formulation for the direct scattering problem, it has to

be solved several times also in the numerical solution of

the corresponding inverse scattering problem. So, effective

methods for solving this equation are also relevant to the

corresponding inverse problem.

Discretization schemes, for this integral equation, give dense

linear systems that are usually solved by using iterative

methods as a consequence of their size [4], [17]. In order

to decrease the computational cost of these methods and/or

reduce the number of iterations and so improve the efficiency

of the method, preconditioning techniques are usually used

in these discretization schemes or directly in the integral

formulation, see for example [5], [7], [8], [12]. Preconditioning

techniques are key instruments to improve the efficiency

and robustness of iterative methods, see [15] for a complete

discussion. These techniques for linear systems are based on

a quite simple idea: The original linear system is transformed
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into an equivalent linear system which is easier to solve

than the original one. This transformation is given by a

suitable matrix, which is usually called preconditioner, and the

transformed linear system is called preconditioned system.

The computation of a good preconditioner is not an easy

task. A quite general idea, for this computation, is to obtain the

preconditioner from an approximation of the coefficient matrix

under consideration, in such a way that the preconditioned

system has coefficient matrix near the identity matrix, which

is the most desirable of all the possible coefficient matrices.

Moreover, this approximation has to be computed quickly and

it has to be quite accurate in order to obtain an effective

preconditioner. Thus, in general, this approximation is not easy

to construct, theoretical results are rare and the performance

of the preconditioners is usually unexpected. For example, the

Jacobi preconditioner [15], that is the diagonal matrix arising

from the diagonal entries of the coefficient matrix, is usually

an effective preconditioner. On the contrary, the preconditioner

arising from a low-rank approximation of the integral equation

under study is not an effective preconditioner, even if this is

an accurate approximation of the original integral equation,

see [11] for details. As a consequence of this behavior, the

preconditioner is sometimes derived from the properties of

the original physical problem from which the linear system is

obtained. In fact, some specialized methods allow to construct

a preconditioner starting from the original coefficient matrix,

see [15] for a detailed discussion.

In a previous paper [11], we studied some preconditioning

techniques for the numerical solution of the integral equation

under consideration. From this study, we concluded that

Symmetric SOR preconditioning can be profitably used in

these scattering problems when the relaxation parameter in the

preconditioner is properly chosen. Here we present a simple

interpolation algorithm for choosing the optimal relaxation

parameter for the Symmetric SOR preconditioning. We note

that other different preconditioning techniques have been

proposed for analogous scattering problems, see [6], [9], [14]

for some examples.

We first introduce some notations, R and C denote the sets

of real numbers and complex numbers, respectively. Let ν be

a positive integer, Rν and C
ν denote the ν-dimensional real

Euclidean space and the ν-dimensional complex Euclidean

space, respectively. Let x, y ∈ R
ν , we denote with xty the

Euclidean scalar product of x and y, the superscript t means

transposed, ‖x‖ denotes the Euclidean norm of x and ‖x‖∞
denotes the usual infinity norm of x. Let μ be a positive
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integer, we denote with MC(μ, ν) the space of complex

matrices having μ rows and ν columns. Let A ∈ MC(ν, ν)
we denote with det(A) the determinant of A. Let det(A) �= 0,

we denote with A−1 ∈ MC(ν, ν) the inverse of A. Let

S
1 = {x ∈ R

2 : ‖x‖ = 1}. Let z ∈ C, denote with Re(z) and

Im(z) the real part and the imaginary part of z, respectively.

Finally, we denote with ı the imaginary unit.

In Section II, we describe the integral formulation of the

electromagnetic scattering problem and the corresponding

discretization scheme. In Section III, we describe the

preconditioning technique. In Section IV, we propose a

simple strategy to numerically compute the optimal relaxation

parameters depending on the wave number and the Krylov

subspace method used and we numerically test such algorithm.

In Section V, we give some conclusions.

II. THE INTEGRAL EQUATION

Let (x1, x2, x3)
t ∈ R

3, be a generic vector. We consider the

propagation of a time-harmonic electromagnetic plane wave

in an inhomogeneous medium having a refractive index n.

We suppose that the refractive index is independent of the

third Cartesian component x3 and that the inhomogeneity is

contained in D ×R ⊂ R
3 where D ⊂ R

2 is a given compact

set, so that n = n(x), x = (x1, x2)
t ∈ R

2 and n(x) = 1 for

x �∈ D.

Moreover, supposing that the polarization vector of the

incident plane wave is parallel to the third Cartesian axis, we

have that the incident electric field has only one non-vanishing

component, i.e. the third one, and this component depends only

on x ∈ R
2. Under these symmetry assumptions, the interaction

of the incident plane wave and the inhomogeneity generates a

scattered electromagnetic wave, that can be supposed harmonic

in time, and the corresponding electric field can be supposed

to have only one non-vanishing Cartesian component, i.e. the

third one, and this component depends only on x ∈ R
2. We

denote with ui(x) = eıkα
tx, x ∈ R

2 the third Cartesian

component of the incident electric field, where k is the wave

number, ı is the imaginary unit and α ∈ S
1 is the propagation

direction. We denote with us(x) ∈ C, x ∈ R
2, the third

Cartesian component of the scattered electric field.

The problem of computing the scattered wave reduces to

a two-dimensional boundary value problem, for the scalar

unknown function u(x) = ui(x) + us(x), x ∈ R
2, that

represents the total electric field, see [13] for a complete

description of this reduction. So, from the integral formulation

of such a boundary value problem, we have that, for x ∈ R
2,

u is the solution of the following Fredholm integral equation

of the second kind:

u(x) +
ık2

4

∫

D

H
(1)
0

(
k
∥∥x− y

∥∥)u(y)m(y) dy = ui(x), (1)

where m(x) = 1− n(x), x ∈ R
2, is called the contrast index

of the medium and H
(1)
0 is the Hankel function of the first

kind and order 0, see [1] for details.

Equation (1) is solved in two steps: 1) compute the solution

u(x), x ∈ D of (1) restricted to x ∈ D, 2) from the knowledge

of u(x), x ∈ D, compute u(x), x ∈ R
2 by using (1). Note

that step 2) is a trivial computation, so we describe only step

1), where we have to solve a Fredholm integral equation of

the second kind. We discretize (1), restricted to x ∈ D, in

the following way. Let ν1, ν2 be two positive integers and

let J = {(i1, i2), i1 = 1, 2, . . . , ν1, i2 = 1, 2, . . . , ν2} be

a corresponding set of indices, we denote with {Qi1,i2 ⊂
R

2, (i1, i2) ∈ J} a rectangular partition of a rectangle R =
[a1, b1) × [a2, b2) ⊂ R

2 containing D. For (i1, i2) ∈ J we

have

ui1,i2 +
ık2

4

∑
(j1,j2)∈J

uj1,j2mj1,j2 ·

·
∫
Qj1,j2

H
(1)
0 (k‖xi1,i2 − y‖)dy = ui

i1,i2 , (2)

where, for (i1, i2) ∈ J , xi1,i2 is the center of the rectangle

Qi1,i2 , ui
i1,i2

= ui(xi1,i2), ui1,i2 = u(xi1,i2), mi1,i2 =
m(xi1,i2

).
Linear system (2) is rewritten as follows

Au = b, (3)

where b ∈ C
ν1ν2 has components ui

i1,i2
, (i1, i2) ∈ J ,

u ∈ C
ν1ν2 has components uj1,j2 , (j1, j2) ∈ J , moreover,

the coefficient matrix A ∈ MC(ν1ν2, ν1ν2) has the following

form: A = I+HM , where I ∈ MC(ν1ν2, ν1ν2) is the identity

matrix, H ∈ MC(ν1ν2, ν1ν2) has entry

ık2

4

∫
Qj1,j2

H
(1)
0 (k‖xi1,i2

− y‖)dy

at row (i1, i2) ∈ J and at column (j1, j2) ∈ J and M ∈
MC(ν1ν2, ν1ν2) is the diagonal matrix with entries mj1,j2 ,

(j1, j2) ∈ J .

Linear system (3) is large even for moderate values of

discretization parameters ν1, ν2, so direct methods cannot

be practically employed for its solution. On the other hand,

linear system (3) is also dense, so iterative methods may

result inefficient. Thus to speed up these methods we use

preconditioning techniques that are illustrated in the following

section.

III. THE PRECONDITIONING TECHNIQUE

A preconditioning scheme is any explicit or implicit

transformation of the original system in order to obtain an

equivalent linear system which is easier than the original one.

We represent this transformation as follows

P−1Au = P−1b, (4)

where the original linear system is assumed to be (3) and

matrix P denotes the preconditioner. For example, the scaling

of the equations of a linear system in order to obtain

unitary entries on the diagonal of the corresponding coefficient

matrix is a preconditioning scheme; in this case, P is a

suitable diagonal matrix. Another example of preconditioning

is obtained by the incomplete factorization of the original

coefficient matrix A. The simplest incomplete factorization is

given as follows:

A = LU −R, (5)
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where L,U have the same nonzero structure as the lower and

upper parts of A and R is the residual of the factorization. In

this case P−1 can be easily computed from matrices L and

U , discarding residual R. Unfortunately, the preconditioning

arising from this incomplete factorization may be ineffective,

so several alternative incomplete factorizations have been

developed to overcome this problem, see [15], Chapter 10, for

details. These are efficient methods to obtain preconditioners

of sparse linear systems since they are specialized to avoid

fill-in during the computation. But the preprocessing cost to

compute the factors is usually high and this is more attractive

when several systems with the same coefficient matrix must

be solved, in fact in these cases the preprocessing cost can

be amortized. For dense linear systems, such as the one under

study, this preprocessing cost is higher than the one for sparse

linear systems, so these factorization methods are usually

ineffective.

For dense linear systems, a particularly attractive class of

preconditioners is given by the standard iteration methods. Let

P and N be matrices such that A = P −N , and det(P ) �= 0.

As in the usual relaxation methods, we have the following

iteration

u(l+1) = P−1Nu(l) + P−1b, (6)

where u(l) is the generic lth approximation of the solution of

(3). Formula (6) can be seen as the fixed-point iteration for

the linear system

(I − P−1N)u = P−1b. (7)

The coefficient matrix of this linear system can be rewritten

as follows: I − P−1N = I − P−1(P − A) = P−1A, so

linear system (7) is equal to (4) and the relaxation scheme (6)

is equivalent to the fixed-point iteration for the preconditioned

linear system (4). Note that in place of the fixed-point iteration,

we can use other iterative methods, such as for example the

Krylov subspace methods.

Let us consider the coefficient matrix A written as follows:

A = AD −AL −AU (8)

where AD is the diagonal of A, −AL is its strict lower part

and −AU is its strict upper part. The Jacobi preconditioner

is obtained from the following choice: P = AD, N =
AL + AU ; so this preconditioner is given by the diagonal

of the coefficient matrix. The Symmetric SOR preconditioner

is obtained by the composition of two iterations, where we

have: 1)P1 = 1
ω (AD − ωAL), N1 = 1

ω (ωAU + (1 − ω)AD);
2)P2 = 1

ω (AD − ωAU ), N2 = 1
ω (ωAL + (1 − ω)AD). Note

that ω ∈ (0, 2) is a relaxation parameter. Thus, we can easily

see that the corresponding preconditioner is

P = Pω =
1

ω(2− ω)
(AD − ωAL)A

−1
D (AD − ωAU ). (9)

We note that the performance of the Symmetric SOR

preconditioner is usually dependent on the choice of relaxation

parameter ω. In the next section, we present a simple

interpolation argument to deal with such a problem.
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Fig. 1 The inhomogeneities considered in the numerical experiments for the
computation of the optimal relaxation parameter

IV. RELAXATION PARAMETER STRATEGY AND

NUMERICAL EXPERIMENTS

We propose a simple method to evaluate the optimal

relaxation parameter ω in the Symmetric SOR preconditioner.

For this evaluation, we have taken into account six

different inhomogeneities, n0
j , j = 1, 2, . . . , 6, and nine

different electromagnetic plane waves having propagation

direction α = (cos π
3 , sin

π
3 )

t and wave number k ∈
Ω = {1, 10, 20, 30, 40, 50, 100, 150, 200}. All the considered

inhomogeneities are contained in a square centered at the
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TABLE I
THE OPTIMAL PARAMETER ω∗ OBTAINED BY BI-CGSTAB AND GMRES

Bi-CGSTAB
k n0

1 n0
2 n0

3 n0
4 n0

5 n0
6

1 1.00 1.00 1.00 1.00 1.00 1.00
10 0.25 0.85 1.00 1.00 1.60 1.00
20 0.25 0.90 0.80 1.00 1.20 0.90
30 0.70 0.60 0.60 0.80 0.50 0.70
40 1.05 0.75 0.65 0.70 0.75 0.70
50 0.85 0.90 0.65 0.70 0.80 0.60
100 0.65 0.70 0.75 0.65 0.55 0.55
150 0.65 0.55 0.55 0.65 0.60 0.60
200 0.50 0.55 0.55 0.60 0.50 0.65

GMRES
k n0

1 n0
2 n0

3 n0
4 n0

5 n0
6

1 1.00 0.95 1.05 0.95 1.00 0.95
10 1.00 0.95 0.95 1.05 1.00 1.05
20 0.95 0.95 0.85 1.00 1.00 1.05
30 1.10 0.80 0.70 1.05 0.75 1.05
40 0.70 0.75 0.65 0.85 1.00 0.85
50 0.80 0.90 0.70 0.75 0.80 0.65
100 0.70 0.75 0.65 0.70 0.70 0.65
150 0.70 0.65 0.65 0.70 0.65 0.60
200 0.55 0.60 0.60 0.70 0.65 0.60

origin and having a side equal to 1, and their real and

imaginary components are supposed in [0, 3], see Fig. 1

for the graphical representation of the real and imaginary

components of inhomogeneities n0
j , j = 1, 2, . . . , 6. Moreover,

the discretization of (1) has been obtained with ν1 = ν2 = 64.

The corresponding linear systems (3) were numerically solved

by two different Krylov subspace methods, i.e. Bi-CGSTAB

and GMRES, with Symmetric SOR preconditioning. For each

linear system, we computed the optimal relaxation parameter

ω = ω∗ by using the following simple algorithm. Let L be a

positive integer, for each ωl = l
L , l = 1, 2, . . . , 2L − 1, we

solved linear system (3) using preconditioner Pl = Pωl
; let

Pλ, with λ ∈ {1, 2, . . . , 2L − 1}, be the best preconditioner,

i.e. the one attaining convergence with the smallest number

Itn of iterations, then ω∗ = ωλ.

Table I reports for each one of the six inhomogeneities

considered, n0
j , j = 1, 2, . . . , 6, these computed parameters

ω∗ obtained with L = 10 as a function of the wave number

k, for the two different Krylov subspace methods employed:

Bi-CGSTAB and GMRES.

Now, we use these numerically obtained optimal relaxation

parameters, given in Table I, for evaluating the optimal

relaxation parameter in different cases. For each k ∈ Ω, we

compute ω̄1(k) as the mean of the numerically computed

optimal relaxation parameters in Table I associated with

Bi-CGSTAB, and ω̄2(k) as the mean of the ones in Table

I associated to GMRES. Moreover, for each k ∈ [1, 200],
and h = 1, 2, we define ωh(k) as the linear spline that

interpolates ω̄h(k), k ∈ Ω. In this way, ωh(k) gives an

approximation of the relaxation parameter also for wave

numbers k ∈ [1, 200] \ Ω, for Bi-CGSTAB when h = 1 and

for GMRES when h = 2.

In order to analyze the behavior of the relaxation parameters

computed by ωh(k), k ∈ [1, 200], h = 1, 2, we consider

ten inhomogeneities nj , j = 1, 2, . . . , 10, that are shown

in Fig. 2, and wave numbers k = 5, 85, 175. We note

that these inhomogeneities and these wave numbers are
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Fig. 2 The real and imaginary parts of the inhomogeneities nj ,
j = 1, 2, . . . , 5 considered in the numerical experiments

different from the ones considered in the construction of

ωh, h = 1, 2. For each inhomogeneity and each wave

number, we compute the solution of linear systems (3) by

using Bi-CGSTAB and GMRES methods. We compare the

results obtained with no preconditioner P = I , Jacobi

preconditioner P = AD, Symmetric SOR preconditioner

P = Pω∗ with optimal relaxation parameter ω = ω∗, and

Symmetric SOR preconditioner P = Pωh
with relaxation

parameter ω = ωh, where h = 1 is used for Bi-CGSTAB

method, and h = 2 is used for GMRES method. Note that

the optimal relaxation parameter ω∗ is numerically computed

by the simple procedure described above with L = 10. These

comparisons are given in terms of the following performance

indices: T the elapsed time (in seconds [s]) for the solution

of the system; Itn the number of iterations performed; E
the relative error in the computed solution. More precisely,

given ũ, the solution computed by one of the iterative methods

mentioned above, and uG, the solution of the same linear

system computed by the Gaussian elimination with partial

pivoting, E is defined as follows:

E =
‖ũ− uG‖∞
‖uG‖∞

. (10)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:17, No:8, 2023 

111International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
7,

 N
o:

8,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

22
4.

pd
f



-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

Re(n6) Im(n6)

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

Re(n7) Im(n7)

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

Re(n8) Im(n8)

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

Re(n9) Im(n9)

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

-0.05 0 0.05
-0.05

0

0.05
-0.05 0 0.05

-0.05

0

0.05

0

3

Re(n10) Im(n10)

Fig. 3 The real and imaginary parts of the inhomogeneities nj ,
j = 6, . . . , 10 considered in the numerical experiments

The results are reported in Tables II-VI, where with the

notation x(y) we mean x·10y . From these tables, we have that

the Symmetric SOR preconditioning performs better than the

other preconditioning techniques, that is no preconditioning

and Jacobi preconditioning. Moreover, functions ωh(k), k ∈
[1, 200], h = 1, 2, provide satisfactory approximations of the

optimal relaxation parameters, in fact, the computational time

and the number of iterations, corresponding to ωh, h = 1, 2,

are very close to the ones obtained for ω∗.

V. CONCLUSIONS

We considered the Symmetric SOR preconditioner in the

numerical solution of an electromagnetic scattering problem.

From the numerical results reported in this paper, we have

that the Symmetric SOR gives an effective preconditioning

technique for this scattering problem. In particular, the simple

algorithm, proposed for the evaluation of the relaxation

parameter, provides satisfactory results. Note that this is an

important result since it gives an effective relation between

the physical quantities in the scattering problem, i.e. the wave

number and the relaxation parameter in the Symmetric SOR

preconditioner. So, we are able to choose a quasi-optimal

TABLE II
THE RESULTS OBTAINED BY BI-CGSTAB

P = I P = AD

n k T Itn E T Itn E
n1 5 3.6s 3 2.7(-14) 3.7s 3 2.7(-14)
n1 85 17.3s 18 5.1(-10) 17.4s 18 5.0(-10)
n1 175 44.9s 48 2.8(-09) 44.0s 47 2.4(-09)
n2 5 2.6s 3 2.5(-14) 2.7s 3 2.4(-14)
n2 85 7.7s 11 1.7(-10) 7.8s 11 1.4(-10)
n2 175 14.8s 22 4.3(-10) 14.8s 22 4.7(-10)
n3 5 2.7s 3 2.1(-13) 2.7s 3 2.0(-13)
n3 85 11.1s 16 4.1(-10) 11.1s 16 3.0(-10)
n3 175 20.8s 31 1.1(-09) 20.8s 31 1.2(-09)
n4 5 2.1s 3 1.4(-14) 2.1s 3 1.4(-14)
n4 85 9.0s 17 5.3(-12) 8.6s 16 4.5(-10)
n4 175 21.5s 42 7.6(-10) 21.0s 41 1.0(-09)
n5 5 2.1s 3 1.3(-14) 2.1s 3 1.3(-14)
n5 85 5.6s 10 1.2(-10) 5.6s 10 1.1(-10)
n5 175 10.6s 20 1.7(-10) 10.6s 20 2.3(-10)
n6 5 2.7s 3 1.1(-13) 2.8s 3 1.1(-13)
n6 85 11.1s 15 6.6(-11) 11.1s 15 5.0(-11)
n6 175 20.1s 28 1.1(-09) 20.9s 29 8.3(-10)
n7 5 1.9s 3 2.7(-15) 1.9s 3 2.6(-15)
n7 85 7.3s 15 1.0(-10) 7.3s 15 9.5(-11)
n7 175 20.6s 44 6.1(-10) 19.8s 42 9.6(-10)
n8 5 0.7s 2 8.5(-12) 0.7s 2 7.9(-12)
n8 85 2.1s 8 2.8(-12) 2.1s 8 2.6(-12)
n8 175 3.6s 15 9.6(-11) 3.6s 15 6.7(-11)
n9 5 3.0s 3 2.2(-14) 3.0s 3 2.1(-14)
n9 85 15.1s 20 9.2(-10) 15.1s 20 5.3(-10)
n9 175 45.0s 62 3.5(-09) 44.4s 61 3.0(-09)
n10 5 3.6s 3 2.4(-14) 3.6s 3 2.3(-14)
n10 85 11.8s 12 1.0(-11) 11.0s 11 4.4(-10)
n10 175 21.9s 23 6.0(-11) 21.0s 22 41.7(-09)

TABLE III
THE RESULTS OBTAINED BY BI-CGSTAB

P = Pω∗ P = Pω1

n k T Itn E T Itn E
n1 5 2.9s 2 1.5(-10) 3.0s 2 2.76(-14)
n1 85 11.2s 10 5.8(-10) 11.2s 10 2.3(-11)
n1 175 19.4s 18 5.3(-10) 20.5s 19 2.3(-09)
n2 5 2.3s 2 1.2(-10) 2.3s 2 1.9(-14)
n2 85 5.3s 6 3.5(-10) 5.3s 6 6.0(-11)
n2 175 7.5s 9 1.8(-10) 7.5s 9 6.5(-10)
n3 5 2.3s 2 5.1(-11) 2.3s 2 2.0(-13)
n3 85 6.8s 8 2.2(-11) 6.8s 8 6.5(-11)
n3 175 8.3s 10 5.8(-10) 8.4s 10 4.5(-10)
n4 5 1.8s 2 8.5(-11) 1.8s 2 9.0(-15)
n4 85 5.9s 9 4.6(-10) 5.9s 9 1.0(-10)
n4 175 8.8s 14 1.6(-09) 9.4s 15 1.8(-09)
n5 5 1.8s 2 1.4(-15) 1.8s 2 2.5(-15)
n5 85 4.1s 6 4.5(-11) 4.1s 6 2.1(-12)
n5 175 5.3s 8 1.2(-10) 5.3s 8 1.4(-10)
n6 5 2.3s 2 1.1(-10) 2.3s 2 4.6(-14)
n6 85 6.1s 7 1.9(-10) 6.2s 7 1.2(-10)
n6 175 7.7s 9 2.8(-10) 7.7s 9 2.2(-10)
n7 5 1.6s 2 7.3(-11) 1.6s 2 3.4(-15)
n7 85 5.3s 9 4.0(-10) 5.3s 9 2.3(-11)
n7 175 10.7s 19 5.0(-11) 10.7s 19 5.1(-10)
n8 5 0.7s 2 6.5(-12) 0.8s 2 7.6(-16)
n8 85 1.5s 5 8.3(-11) 1.8s 6 1.2(-12)
n8 175 2.0s 7 5.3(-11) 2.4s 8 1.3(-11)
n9 5 2.6s 2 1.1(-12) 2.6s 2 5.9(-15)
n9 85 9.2s 10 2.9(-11) 9.2s 10 1.0(-10)
n9 175 16.7s 19 2.4(-09) 16.7s 19 2.3(-09)
n10 5 2.9s 2 9.6(-11) 3.0s 2 1.8(-14)
n10 85 7.1s 6 3.3(-10) 7.1s 6 8.1(-11)
n10 175 10.1s 9 1.5(-09) 10.1s 9 2.8(-10)
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TABLE IV
THE RELAXATION PARAMETERS ω∗ AND ω1 USED TO OBTAIN TABLE III

n k ω∗ ω1 n k ω∗ ω1

n1 5 0.55 0.99 n6 5 0.65 0.99
n1 85 0.80 0.71 n6 85 0.60 0.71
n1 175 0.65 0.64 n6 175 0.60 0.64
n2 5 0.55 0.99 n7 5 0.40 0.99
n2 85 0.50 0.71 n7 85 0.80 0.71
n2 175 0.65 0.64 n7 175 0.65 0.64
n3 5 0.75 0.99 n8 5 0.05 0.99
n3 85 0.65 0.71 n8 85 0.75 0.71
n3 175 0.60 0.64 n8 175 0.65 0.64
n4 5 0.55 0.99 n9 5 1.10 0.99
n4 85 0.65 0.71 n9 85 0.70 0.71
n4 175 0.65 0.64 n9 175 0.60 0.64
n5 5 0.55 1.00 n10 5 0.55 0.99
n5 85 0.50 0.71 n10 85 0.55 0.71
n5 175 0.60 0.64 n10 175 0.45 0.64

TABLE V
THE RESULTS OBTAINED BY GMRES

P = I P = AD

n k T Itn E T Itn E
n1 5 5.0s 8 2.3(-14) 5.0s 8 2.0(-14)
n1 85 15.1s 30 5.4(-15) 15.2s 30 2.0(-14)
n1 175 38.2s 80 2.0(-13) 38.3s 80 2.5(-13)
n2 5 3.6s 8 2.5(-15) 3.6s 8 3.1(-14)
n2 85 9.4s 26 4.8(-15) 9.1s 25 3.5(-14)
n2 175 13.6s 40 46.0(-15) 13.7s 40 8.9(-15)
n3 5 4.0s 9 1.6(-15) 3.7s 8 2.0(-14)
n3 85 10.8s 30 5.6(-15) 10.9s 30 3.2(-14)
n3 175 13.8s 40 4.0(-11) 13.8s 40 4.7(-11)
n4 5 2.8s 8 1.5(-15) 2.9s 8 1.2(-14)
n4 85 97.6s 27 4.1(-15) 7.7s 27 1.5(-14)
n4 175 10.7s 40 7.1(-11) 10.7s 40 9.6(-11)
n5 5 2.9s 8 1.8(-15) 2.9s 8 2.0(-14)
n5 85 6.9s 24 4.3(-15) 6.7s 23 2.8(-14)
n5 175 10.7s 39 5.7(-15) 10.7s 39 1.4(-14)
n6 5 3.8s 8 1.4(-15) 3.8s 8 1.4(-14)
n6 85 10.8s 28 7.0(-15) 11.0s 27 2.5(-14)
n6 175 14.7s 40 5.0(-14) 14.7s 40 7.1(-14)
n7 5 2.6s 8 2.3(-15) 2.3s 7 1.5(-14)
n7 85 6.8s 26 3.6(-15) 6.6s 25 1.6(-14)
n7 175 9.9s 40 1.5(-12) 9.9s 40 1.9(-12)
n8 5 1.2s 7 1.4(-15) 1.1s 7 1.4(-15)
n8 85 2.5s 19 2.1(-15) 2.4s 18 3.6(-15)
n8 175 3.6s 29 2.5(-15) 3.8s 29 2.0(-15)
n9 5 4.4s 9 1.9(-15) 4.1s 8 2.5(-14)
n9 85 13.1s 33 7.5(-15) 13.1s 33 2.0(-14)
n9 175 30.0s 80 5.5(-10) 30.0s 80 3.3(-10)
n10 5 5.0s 8 1.8(-15) 5.0s 8 3.2(-14)
n10 85 12.8s 25 1.1(-14) 12.9s 25 4.0(-14)
n10 175 19.3s 40 1.1(-14) 19.3s 40 7.0(-15)

relaxation parameter from the knowledge of the wave number

used in the scattering problem.

The proposed method can be refined in different ways,

taking into account the discretization parameters ν1, ν2 and

other physical quantities; for example, for each iterative

method, the evaluation of ω can be given by three different

interpolating functions: one for insulating inhomogeneities

(Im(n) = 0), one for perfectly conductive inhomogeneities

(Re(n) = 1), one for the other inhomogeneities (Im(n) �=
0, Re(n) �= 1). So, depending on the physical nature

of the inhomogeneities under consideration, we can select

ω by the appropriate interpolation function. Finally, we

TABLE VI
THE RESULTS OBTAINED BY GMRES

P = Pω∗ P = Pω2

n k T Itn E T Itn E
n1 5 4.6s 6 1.8(-15) 4.6s 6 1.9(-15)
n1 85 12.8s 22 3.6(-15) 12.8s 22 5.4(-15)
n1 175 20.1s 36 8.1(-15) 21.1s 38 4.3(-15)
n2 5 3.4s 6 2.0(-15) 3.4s 6 1.8(-15)
n2 85 8.0s 18 3.4(-15) 8.4s 19 3.4(-15)
n2 175 11.8s 28 5.6(-15) 11.8s 28 4.1(-15)
n3 5 3.5s 6 1.5(-15) 3.5s 6 2.4(-15)
n3 85 9.9s 23 3.0(-15) 9.9s 23 3.9(-15)
n3 175 14.1s 34 3.7(-15) 14.1s 34 3.8(-15)
n4 5 2.7s 6 1.6(-15) 2.7s 6 1.6(-15)
n4 85 6.8s 20 3.8(-15) 6.9s 20 5.1(-15)
n4 175 10.7s 33 4.5(-15) 11.0s 34 3.0(-15)
n5 5 2.7s 6 2.7(-15) 2.7s 6 1.6(-15)
n5 85 6.0s 17 2.6(-15) 6.0s 17 2.3(-15)
n5 175 8.3s 25 2.8(-15) 8.3s 25 3.8(-15)
n6 5 3.5s 6 2.1(-15) 3.5s 6 2.6(-15)
n6 85 9.0s 20 2.8(-15) 9.0s 20 6.5(-15)
n6 175 13.3s 31 4.8(-15) 12.9s 30 2.6(-15)
n7 5 2.2s 5 2.0(-15) 2.1s 5 3.1(-15)
n7 85 6.2s 20 3.2(-15) 6.2s 20 5.1(-15)
n7 175 9.7s 33 5.7(-15) 9.7s 33 5.0(-15)
n8 5 1.0s 5 2.3(-15) 1.0s 5 3.2(-15)
n8 85 2.2s 14 1.5(-15) 2.2s 14 1.9(-15)
n8 175 3.0s 21 1.6(-15) 3.1s 21 4.2(-15)
n9 5 3.9s 6 3.6(-15) 3.9s 6 2.0(-15)
n9 85 11.0s 23 4.7(-15) 10.6s 22 5.7(-15)
n9 175 17.3s 38 6.2(-15) 17.3s 38 7.8(-15)
n10 5 4.6s 6 3.4(-15) 4.6s 6 2.4(-15)
n10 85 11.3s 19 3.3(-15) 10.7s 18 3.8(-15)
n10 175 16.0s 28 4.4(-15) 16.5s 29 3.3(-15)

TABLE VII
THE RELAXATION PARAMETERS ω∗ AND ω2 USED TO OBTAIN TABLE VI

n k ω∗ ω2 n k ω∗ ω2

n1 5 1.05 0.99 n6 5 0.95 0.99
n1 85 0.80 0.65 n6 85 0.60 0.71
n1 175 0.70 0.64 n6 175 0.55 0.64
n2 5 0.90 0.99 n7 5 1.00 0.99
n2 85 0.70 0.71 n7 85 0.70 0.71
n2 175 0.60 0.64 n7 175 0.70 0.64
n3 5 1.00 0.99 n8 5 1.05 0.99
n3 85 0.70 0.71 n8 85 1.00 0.71
n3 175 0.55 0.64 n8 175 0.80 0.64
n4 5 1.05 0.99 n9 5 1.05 0.99
n4 85 0.75 0.71 n9 85 0.65 0.71
n4 175 0.70 0.64 n9 175 0.65 0.64
n5 5 0.85 0.99 n10 5 0.85 0.99
n5 85 0.80 0.71 n10 85 0.65 0.71
n5 175 0.60 0.65 n10 175 0.45 0.64

note that the excellent results obtained for the Symmetric

SOR preconditioning suggest further investigations of this

preconditioning technique; in particular, an interesting

development of the present paper is the theoretical study of the

optimal relaxation parameter for the scattering problem under

consideration, and the application of the Symmetric SOR

preconditioning in the numerical solution of similar scattering

problems.
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