Search results for: municipal sewage sludge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 233

Search results for: municipal sewage sludge

233 Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage

Authors: Michal M. Koziol

Abstract:

The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.

Keywords: fuel properties, laboratory tests, sewage sludge, storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
232 The Effects of Sewage Sludge Usage and Manure on Some Heavy Metals Uptake in Savory (Satureja hortensis L.)

Authors: A. Hani

Abstract:

In recent decades with the development of technology and lack of food sources, sewage sludge in production of human foods is inevitable. Various sources of municipal and industrial sewage sludge that is produced can provide the requirement of plant nutrients. Soils in arid, semi-arid climate of central Iran that most affected by water drainage, iron and zinc deficiencies, using of sewage sludge is helpful. Therefore, the aim of this study is investigation of sewage sludge and manure application on Ni, Pb and Cd uptake by Savory. An experiment in a randomized complete block design with three replications was performed. Sewage sludge treatments consisted of four levels, control, 15, 30, 80 tons per hectares; the manure was used in four levels of control, 20, 40 and 80 tons per hectare. Results showed that the wet and dry weights was not affected by sewage sludge using, while, manure has significant effect on them. The effect of sewage sludge on the cadmium and lead concentrations were significant. Interactions of sewage sludge and manure on dry weight values were not significant. Compare mean analysis showed that increasing the amount of sewage sludge had no significant effect on cadmium concentration and it reduced when sewage sludge usage increased. This is probably due to increased plant growth and reduced concentrations of these elements in the plant.

Keywords: Savory, lead, cadmium, sewage sludge, manure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
231 Sewage Sludge Management in Egypt: Current Status and Perspectives towards a Sustainable Agricultural Use

Authors: M. Ghazy, T. Dockhorn, N. Dichtl

Abstract:

The present disposal routes of sewage sludge represent a critical environmental issue in Egypt. Recently, there has been an increasing concern about sewage sludge management due to the environmental risks, which resulted from the fast expansion of wastewater treatment plants without equal attention in dealing with the produced sludge. This paper discusses the current situation of sewage sludge management in Egypt presenting a brief overview of the existing wastewater treatment plants, sludge production and characteristics as well as options of beneficial use and potential demand of sewage sludge under Egyptian conditions. The characteristics of sewage sludge are discussed considering the results of own sampling and analysis as well as previous studies. Furthermore, alternative treatment scenarios for sewage sludge, which have been recently developed in Egypt, are discussed and perspectives for a sustainable agricultural use are outlined.

Keywords: Beneficial use, Egypt, Monetary value, Stabilization processes, Sewage sludge, Sludge management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381
230 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

Authors: K. V. Kalinichenko, G. N. Nikovskaya

Abstract:

The efficiency of heavy metals removal from sewage  sludge in bioleaching processes with heterotrophic, chemoautotrophic  (sulphur-oxidizing) sludge cenoses and chemical leaching (in  distilled water, weakly acidic or alkaline medium) was compared.  The efficacy of heavy metals removal from sewage sludge varies  from 83 % (Zn) up to 14 % (Cr) and follows the order: Zn > Mn > Cu  > Ni > Co > Pb > Cr. The advantages of metals bioleaching process  at heterotrophic metabolism were shown. A new process for  bioconversation of sewage sludge into fertilizer at middle  temperatures after partial heavy metals removal was developed. This  process is based on enhancing vital ability of heterotrophic  microorganisms by adding easily metabolized nutrients and synthesis  of metabolites by growing sludge cenoses. These metabolites possess  the properties of heavy metals extractants and flocculants which  provide the enhancement of sludge flocks sedimentation. The process  results in biomineral fertilizer of prolonged action with immobilized  sludge bioelements. The fertilizer satisfies the EU limits for the  sewage sludge of agricultural utilization. High efficiency of the  biomineral fertilizer obtained has been demonstrated in vegetation  experiments.

 

Keywords: Fertilizer, heavy metals, leaching, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
229 Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant

Authors: X. Vecino, J. M. Cruz, A. Moldes

Abstract:

The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthermore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the biodegradation, up to 40.5% of the initial concentration of this polycyclic aromatic hydrocarbon.

Keywords: Fluorene, lipopeptide biosurfactant, mobilization, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
228 Possibilities of Sewage Sludge Application in the Conditions of Slovak Republic

Authors: Peter Takáč, Dana Šimová, Terézia Szabová, Tomáš Bakalár

Abstract:

The direct sewage sludge application is a relative cheap method for their liquidation. In the past heavy metal contents increase in soils treated with sewage sludge was observed. In 2003 there was acceptance on act n.188/2003 about sewage sludge application on soils. The basic philosophy of act is a safety of the environmental proof of sludge application on soils. The samples of soils from wastewater treatment plant (WTP) Poprad (35) and WTP Michalovce (33 samples) were analyzed which were chosen for sludge application on soils. According to the results only 14 areas for Poprad and 25 areas for Michalovce are suitable for sludge application according to act No. 188/2003. The application dose of sludge was calculated 50 t.ha-1 or 75 t. ha-1 once in 5 years to ensure that heavy metal contents in treated soils will be kept.

Keywords: Environmental safety, heavy metals in soils, sewagesludge application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
227 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
226 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
225 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
224 Determination of Cadmium and Lead in Sewage Sludge from the Middle Region (Misrata, Msallata and Tarhünah Cities) of Libya

Authors: J. A. Mayouf, Q. A. Najim, H. S. Al-Bayati

Abstract:

The concentrations of cadmium and lead in sewage sludge samples were determined by Atomic Absorption Spectrometric Method. Samples of sewage sludge were obtained from three sewage treatment plants localised in Middle Region of Libya (Misrata, Msallata and Tarhünah cities). The results shows that, the mean levels of Cadmium for all regions are ranges from 81 to 123.4 ppm and these values are higher than the limitations for the international standard which are not registered more than 50 ppm (dry weight) in USA, Egypt and the EU countries. While, the lead concentrations are ranged from 8.0 to 189.2 ppm and all values are within the standard limits which graduated between (275–613) ppm.

Keywords: Cadmium, Lead, Sewage, Spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4834
223 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando

Abstract:

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.

Keywords: Bubbling fluidized bed, pyrolysis time, segregation effects, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
222 The Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: Biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
221 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content

Authors: Ml. López-Moreno, Le. Lugo Avilés, Fr. Román, J. Lugo Rosas, Ja. Hernández-Viezcas, Jr. Peralta-Videa, Jl. Gardea-Torresdey

Abstract:

Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results costeffective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.

Keywords: Compost, Coriandrum sativum, nutrients, waste sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
220 Bioleaching of Heavy Metals from Sewage Sludge Using Indigenous Iron-Oxidizing Microorganisms: Effect of Substrate Concentration and Total Solids

Authors: Ashish Pathak, M. G. Dastidar, T. R. Sreekrishnan

Abstract:

In the present study, the effect of ferrous sulfate concentration and total solids on bioleaching of heavy metals from sewage sludge has been examined using indigenous iron-oxidizing microorganisms. The experiments on effects of ferrous sulfate concentrations on bioleaching were carried out using ferrous sulfate of different concentrations (5-20 g L-1) to optimize the concentration of ferrous sulfate for maximum bioleaching. A rapid change in the pH and ORP took place in first 2 days followed by a slow change till 16th day in all the sludge samples. A 10 g L-1 ferrous sulfate concentration was found to be sufficient in metal bioleaching in the following order: Zn: 69%>Cu: 52%>Cr: 46%>Ni: 45. Further, bioleaching using 10 g/L ferrous sulfate was found to be efficient up to 20 g L-1 sludge solids concentration. The results of the present study strongly indicate that using 10 g L-1 ferrous sulfate indigenous iron-oxidizing microorganisms can bring down pH to a value needed for significant metal solubilization.

Keywords: Bioleaching, heavy metals, sewage sludge, iron oxidizing microorganisms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
219 Farmers’ Perception, Willingness and Capacity in Utilization of Household Sewage Sludge as Organic Resources for Peri-Urban Agriculture around Jos Nigeria

Authors: C. C. Alamanjo, A. O. Adepoju, H. Martin, R. N. Baines

Abstract:

Peri-urban agriculture in Jos Nigeria serves as a major means of livelihood for both urban and peri-urban poor, and constitutes huge commercial inclination with a target market that has spanned beyond Plateau State. Yet, the sustainability of this sector is threatened by intensive application of urban refuse ash contaminated with heavy metals, as a result of the highly heterogeneous materials used in ash production. Hence, this research aimed to understand the current fertilizer employed by farmers, their perception and acceptability in utilization of household sewage sludge for agricultural purposes and their capacity in mitigating risks associated with such practice. Mixed methods approach was adopted, and data collection tools used include survey questionnaire, focus group discussion with farmers, participants and field observation. The study identified that farmers maintain a complex mixture of organic and chemical fertilizers, with mixture composition that is dependent on fertilizer availability and affordability. Also, farmers have decreased the rate of utilization of urban refuse ash due to labor and increased logistic cost and are keen to utilize household sewage sludge for soil fertility improvement but are mainly constrained by accessibility of this waste product. Nevertheless, farmers near to sewage disposal points have commenced utilization of household sewage sludge for improving soil fertility. Farmers were knowledgeable on composting but find their strategic method of dewatering and sun drying more convenient. Irrigation farmers were not enthusiastic for treatment, as they desired both water and sludge. Secondly, household sewage sludge observed in the field is heterogeneous due to nearness between its disposal point and that of urban refuse, which raises concern for possible cross-contamination of pollutants and also portrays lack of extension guidance as regards to treatment and management of household sewage sludge for agricultural purposes. Hence, farmers concerns need to be addressed, particularly in providing extension advice and establishment of decentralized household sewage sludge collection centers, for continuous availability of liquid and concentrated sludge. Urgent need is also required for the Federal Government of Nigeria to increase commitment towards empowering her subsidiaries for efficient discharge of corporate responsibilities.

Keywords: Ash, farmers, household, peri-urban, refuse, sewage, sludge, urban.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
218 An Overview of Sludge Utilization into Fired Clay Brick

Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim

Abstract:

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.

Keywords: Fired Clay Brick, Sludge waste, Compressive strength, Shrinkage, Water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5419
217 Stability and Kinetic Analysis during Vermicomposting of Sewage Sludge

Authors: Ashish Kumar Nayak, Dhamodharan K., Ajay S. Kalamdhad

Abstract:

The present study is aimed at alteration of sewage sludge into stable compost product using vermicomposting of sewage sludge mixed with cattle manure and saw dust in five different proportions based on C/N ratios (C/N 15 (R1), 20 (R2), 25 (R3) and 30 (R4); and control (R5)) by employing an epigeic earthworm Eisenia fetida. Higher reductions in C/N ratio, CO2 evolution and OUR were observed in R4 demonstrated the compost stability. In addition, R4 proved to be best combination for the growth of the earthworms. In order to observe the optimal degradation, kinetics for degradation of organic matter in vermicomposting were quantitatively evaluated. An approach model was developed by assuming that composting process is carried out in a homogeneous way and the kinetics for decomposition reaction is represented by a Monod-type equation. The results exhibit comparable variations in the kinetic constants Km and K3 under varying parameters during vermicomposting process. Results suggested that higher R2 value in R4, enhanced suitability towards Lineweaver-Burke plot. R4 yields higher degradability coefficient (K) reveals that the occurrence of optimal nutrient balance, which not only enhanced the affinity of enzymes towards substrate but also improved its degradation process. Therefore, it can be proved that R4 provided to be the best feed combination for vermicomposting process as compared to other reactors.

Keywords: Vermicomposting, Eisenia fetida, Sewage sludge, C/N ratio, Stability, Enzyme kinetics concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
216 Investigation of Heavy Metals Uptake by Vegetable Crops from Metal-Contaminated Soil

Authors: Azita Behbahaninia, Seid Ahmad Mirbagheri

Abstract:

The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban areas of developing countries. The reuse of nutrients and organic matter in treated wastewater and sewage sludge via land application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. Long-term use of sewage sludge, heavy metals can accumulate to phytotoxic levels and results in reduced plants growth and/or enhanced metal concentrations in plants, which consumed by animals then enter the food chain. In this research, the amount of heavy metals was measured in plants irrigated with wastewater and sludge application. For this purpose, three pilots were made in a Shush treatment plant in south of Tehran. Three plants species, spinach, lettuce and radish were selected and planted in the pilots.First pilot was irrigated just with wastewater of treatment plant and second pilot was irrigated with wastewater and sludge application .Third pilot was irrigated with simulated heavy metals solution equal 50 years of irrigation. The results indicate that the average of amount of heavy metals Pb, Cd in three plant species in first pilot were lower than permissible limits .In second pilot, Cadmium accumulations are high in three species plants and more than the standard limits. Concentration of Cd , Pb have exceed their permitted limits in plants in third pilot . It was concluded that the use of wastewater and sludge application in agricultural lands enriched soils with heavy metals to concentrations that may pose potential environmental and health risks in the long-term.

Keywords: Soil, contaminate, heavy metals, wastewater, sludge, plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
215 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids

Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich

Abstract:

Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.

Keywords: Metal, recycling, sewage sludge, trace element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
214 Heavy Metals Transport in the Soil Profiles under the Application of Sludge and Wastewater

Authors: A. Behbahaninia, S. A. Mirbagheri, A. H. Javid

Abstract:

Heavy metal transfer in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban area of developing countries. In this study soil samples under sludge application and wastewater irrigation were studied and soil samples were collected in the soil profiles from the surface to 100 cm in depth. For this purpose, three plots were made in a treatment plant in south of Tehran-Iran. First plot was irrigated just with effluent from wastewater treatment plant, second plot with simulated heavy metals concentration equal 50 years irrigation and in third plot sewage sludge and effluent was used. Trace metals concentration (Cd, Cu) were determined for soil samples. The results indicate movement of metals was observed, but the most concentration of metals was found in topsoil samples. The most of Cadmium concentration was measured in the topsoil of plot 3, 4.5mg/kg and Maximum cadmium movement was observed in 0-20 cm. The most concentration of copper was 27.76mg/kg, and maximum percolation in 0-20 cm. Metals (Cd, Cu) were measured in leached water. Preferential flow and metal complexation with soluble organic apparently allow leaching of heavy metals.

Keywords: Heavy metal, sludge, soil, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
213 Evaluation Biofilm Sewage Treatment Plant

Authors: K. M. Shahot. I. A. Ekhmaj

Abstract:

The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.

Keywords: Sewage, Bio film, Cosmo-Ball, Activated sludge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
212 Using Reuse Water for Irrigation Green space of Naein City

Authors: Nasri M., Soleimani A.

Abstract:

Since water resources of desert Naein City are very limited, a approach which saves water resources and meanwhile meets the needs of the greenspace for water is to use city-s sewage wastewater. Proper treatment of Naein-s sewage up to the standards required for green space uses may solve some of the problems of green space development of the city. The present paper closely examines available statistics and information associated with city-s sewage system, and determines complementary stages of sewage treatment facilities of the city. In the present paper, population, per capita water use, and required discharge for various greenspace pieces including different plants are calculated. Moreover, in order to facilitate the application of water resources, a Crude water distribution network apart from drinking water distribution network is designed, and a plan for mixing municipal wells- water with sewage wastewater in proposed mixing tanks is suggested. Hence, following greenspace irrigation reform and complementary plan, per capita greenspace of the city will be increased from current amount of 13.2 square meters to 32 square meters.

Keywords: Sewage Treatment Facility, Wastewater, Greenspace, Distribution Network, Naein City

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
211 Rheological Behavior of Fresh Activated Sludge

Authors: Salam K. Al-Dawery

Abstract:

Despite of few research works on municipal sludge, still there is a lack of actual data. Thus, this work was focused on the conditioning and rheology of fresh activated sludge. The effect of cationic polyelectrolyte has been investigated at different concentrations and pH values in a comparative fashion. Yield stress is presented in all results indicating the minimum stress that necessary to reach flow conditions. Connections between particle-particle is the reason for this yield stress, also, the addition of polyelectrolyte causes strong bonds between particles and water resulting in the aggregation of particles which required higher shear stress in order to flow. The results from the experiments indicate that the cationic polyelectrolytes have significant effluence on the sludge characteristic and water quality such as turbidity, SVI, zone settling rate and shear stress.

Keywords: Rheology, Polyelectrolyte, Settling volume index, Turbidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
210 Communities of Ammonia-oxidizing Archaea and Bacteria in Enriched Nitrifying Activated Sludge

Authors: Puntipar Sonthiphand, Tawan Limpiyakorn

Abstract:

In this study, communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) prepared by enriching sludge from a municipal wastewater treatment plant in three continuous-flow reactors receiving an inorganic medium containing different ammonium concentrations of 2, 10, and 30 mM NH4 +-N (NAS2, NAS10, and NAS30, respectively) were investigated using molecular analysis. Results suggested that almost all AOA clones from NAS2, NAS10, and NAS30 fell into the same AOA cluster and AOA communities in NAS2 and NAS10 were more diverse than those of NAS30. In contrast to AOA, AOB communities obviously shifted from the seed sludge to enriched NASs and in each enriched NAS, communities of AOB varied particularly. The seed sludge contained members of N. communis cluster and N. oligotropha cluster. After it was enriched under various ammonium loads, members of N. communis cluster disappeared from all enriched NASs. AOB with high affinity to ammonia presented in NAS 2, AOB with low affinity to ammonia presented in NAS 30, and both types of AOB survived in NAS 10. These demonstrated that ammonium load significantly influenced AOB communities, but not AOA communities in enriched NASs.

Keywords: ammonia-oxidizing bacteria, ammonia-oxidizingarchaea, nitrifying activated sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
209 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR based phylogenetic analysis was also carried out. The average operating and environmental parameters as well as specific nitrification rate of plant was investigated during the study. During the investigation the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with influent ammonia concentration of 31.69 and 24.47 mg/L. The influent flow rates (ML/Day) was 96.81 during period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit (amoA) gene, ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), specific nitrification rate, PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
208 Degradation of EE2 by Different Consortium of Enriched Nitrifying Activated Sludge

Authors: Pantip Kayee

Abstract:

17α-ethinylestradiol (EE2) is a recalcitrant micropollutant which is found in small amounts in municipal wastewater. But these small amounts still adversely affect for the reproductive function of aquatic organisms. Evidence in the past suggested that full-scale WWTPs equipped with nitrification process enhanced the removal of EE2 in the municipal wastewater. EE2 has been proven to be able to be transformed by ammonia oxidizing bacteria (AOB) via co-metabolism. This research aims to clarify the EE2 degradation pattern by different consortium of ammonia oxidizing microorganism (AOM) including AOA (ammonia oxidizing archaea) and investigate contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM. The result showed that AOA or AOB of N. oligotropha cluster in enriched nitrifying activated sludge (NAS) from 2mM and 5mM, commonly found in municipal WWTPs, could degrade EE2 in wastewater via co-metabolism. Moreover, the investigation of the contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM demonstrated that the new synthesized AMO enzyme may perform ammonia oxidation rather than the existing AMO enzyme or the existing AMO enzyme may has a small amount to oxidize ammonia.

Keywords: 17α-ethinylestradiol, nitrification, ammonia oxidizing bacteria, ammonia oxidizing archaea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
207 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology

Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng

Abstract:

The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.

Keywords: Anaerobic digestion, biogas, biomethane potential, food waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
206 Urban Management and China's Municipal Pattern

Authors: Ling Zheng, Yaping Wei, Kang Cao, Zheng Huang, Songpo Shi

Abstract:

Not only is municipal pattern the institution basement of urban management, but it also determines the forms of the management results. There-s a considerable possibility of bankruptcy for China-s current municipal pattern as it-s an overdraft of land deal in fact. Based on the analysis of China-s current municipal pattern, the passage proposed an assumption of a new pattern verified legitimacy by conceptual as well as econometric models. Conclusion is: the added supernumerary value of investment in public goods was not included in China-s current municipal pattern, but hidden in the rising housing prices; we should set housing tax or municipal tax to optimize the municipal pattern, to correct the behavior of local governments and to ensure the regular development of China-s urbanization.

Keywords: Urban management, China's municipal pattern, land financial institution, housing tax, Public goods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
205 Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida

Authors: Kunwar D. Yadav, Dayanand Sharma

Abstract:

Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and Eisenia foetida as earthworm spices. The vermicompost reactor of 0.3 m3 capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg).

Keywords: Cow dung, Eisenia foetida, textile sludge, vermicompost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
204 The Occurrence of Fungi in Activated Sludge from MBRs

Authors: Mohamed F. Awad, M. Kraume

Abstract:

The objective of this study is to evaluate the occurrence of fungi in aerobic and anoxic activated sludge from membrane bioreactors (MBRs). Thirty-six samples of both aerobic and anoxic activated sludge were taken from 2 MBR treating domestic wastewater. Over a period of eight months 2 samples from each plant were taken per month. The samples were prepared for count and definition of fungi. The obtained data show that, sixty species belonging to 27 genera were collected from activated sludge samples under aerobic and anoxic conditions. Regarding to the fungi definition, under aerobic condition the Geotrichum was found at (8.8%) followed by Penicillium (75.0%), Yeasts (65.7%) and Trichoderma (55.5%), while Yeasts (77.1%) Geotrichum candidumand Penicillium (61.1%) species were the most prevalent in anoxic activated sludge. The results indicate that activated sludge is habitat for growth and sporulation of different groups of fungi, both saprophytic and pathogenic.

Keywords: Aerobic conditions, Anoxic conditions, Activated sludge, Membrane bioreactor, Fungi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141