Search results for: inverse Laplace transform techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3367

Search results for: inverse Laplace transform techniques

3367 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

Authors: Vinod Mishra, Dimple Rani

Abstract:

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
3366 Transient Currents in a Double Conductor Line above a Conducting Half-Space

Authors: Valentina Koliskina, Inta Volodko

Abstract:

Transient eddy current problem is solved in the present paper by the method of the Laplace transform for the case of a double conductor line located parallel to a conducting half-space. The Fourier sine and cosine integral transforms are used in order to find the Laplace transform of the solution. The inverse Laplace transform of the solution is found in closed form. The integrated electromotive force per unit length of the double conductor line is calculated in the form of an improper integral.

Keywords: Transient eddy currents, Laplace transform, double conductor line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
3365 Dynamic Analysis of Viscoelastic Plates with Variable Thickness

Authors: Gülçin Tekin, Fethi Kadıoğlu

Abstract:

In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.

Keywords: Dynamic analysis, inverse Laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
3364 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems

Authors: B. I. Yun

Abstract:

A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.

Keywords: Axisymmetric elasticity, boundary element method, dual-reciprocity method, Laplace transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
3363 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: Nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
3362 Generalized Stokes’ Problems for an Incompressible Couple Stress Fluid

Authors: M.Devakar, T.K.V.Iyengar

Abstract:

In this paper, we investigate the generalized Stokes’ problems for an incompressible couple stress fluid. Analytical solution of the governing equations is obtained in Laplace transform domain for each problem. A standard numerical inversion technique is used to invert the Laplace transform of the velocity in each case. The effect of various material parameters on velocity is discussed and the results are presented through graphs. It is observed that, the results are in tune with the observation of V.K.Stokes in connection with the variation of velocity in the flow between two parallel plates when the top one is moving with constant velocity and the bottom one is at rest.

Keywords: Couple stress fluid, Generalized Stokes’ problems, Laplace transform, Numerical inversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
3361 On Method of Fundamental Solution for Nondestructive Testing

Authors: Jieer Wu, Zheshu Ma

Abstract:

Nondestructive testing in engineering is an inverse Cauchy problem for Laplace equation. In this paper the problem of nondestructive testing is expressed by a Laplace-s equation with third-kind boundary conditions. In order to find unknown values on the boundary, the method of fundamental solution is introduced and realized. Because of the ill-posedness of studied problems, the TSVD regularization technique in combination with L-curve criteria and Generalized Cross Validation criteria is employed. Numerical results are shown that the TSVD method combined with L-curve criteria is more efficient than the TSVD method combined with GCV criteria. The abstract goes here.

Keywords: ill-posed, TSVD, Laplace's equation, inverse problem, L-curve, Generalized Cross Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
3360 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
3359 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream

Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh

Abstract:

In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.

Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
3358 Design Techniques and Implementation of Low Power High-Throughput Discrete Wavelet Transform Tilters for JPEG 2000 Standard

Authors: Grigorios D. Dimitroulakos, N. D. Zervas, N. Sklavos, Costas E. Goutis

Abstract:

In this paper, the implementation of low power, high throughput convolutional filters for the one dimensional Discrete Wavelet Transform and its inverse are presented. The analysis filters have already been used for the implementation of a high performance DWT encoder [15] with minimum memory requirements for the JPEG 2000 standard. This paper presents the design techniques and the implementation of the convolutional filters included in the JPEG2000 standard for the forward and inverse DWT for achieving low-power operation, high performance and reduced memory accesses. Moreover, they have the ability of performing progressive computations so as to minimize the buffering between the decomposition and reconstruction phases. The experimental results illustrate the filters- low power high throughput characteristics as well as their memory efficient operation.

Keywords: Discrete Wavelet Transform; JPEG2000 standard; VLSI design; Low Power-Throughput-optimized filters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
3357 MRI Reconstruction Using Discrete Fourier Transform: A tutorial

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.

Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5052
3356 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions

Authors: Adil Al-Rammahi

Abstract:

Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.

Keywords: Differential Equations, Laplace Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138
3355 Comparison of S-transform and Wavelet Transform in Power Quality Analysis

Authors: Mohammad Javad Dehghani

Abstract:

In the power quality analysis non-stationary nature of voltage distortions require some precise and powerful analytical techniques. The time-frequency representation (TFR) provides a powerful method for identification of the non-stationary of the signals. This paper investigates a comparative study on two techniques for analysis and visualization of voltage distortions with time-varying amplitudes. The techniques include the Discrete Wavelet Transform (DWT), and the S-Transform. Several power quality problems are analyzed using both the discrete wavelet transform and S–transform, showing clearly the advantage of the S– transform in detecting, localizing, and classifying the power quality problems.

Keywords: Power quality, S-Transform, Short Time FourierTransform , Wavelet Transform, instantaneous sag, swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758
3354 Laplace Decomposition Approximation Solution for a System of Multi-Pantograph Equations

Authors: M. A. Koroma, C. Zhan, A. F. Kamara, A. B. Sesay

Abstract:

In this work we adopt a combination of Laplace transform and the decomposition method to find numerical solutions of a system of multi-pantograph equations. The procedure leads to a rapid convergence of the series to the exact solution after computing a few terms. The effectiveness of the method is demonstrated in some examples by obtaining the exact solution and in others by computing the absolute error which decreases as the number of terms of the series increases.

Keywords: Laplace decomposition, pantograph equations, exact solution, numerical solution, approximate solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
3353 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

Authors: R. K. Saxena, Ravi Saxena

Abstract:

In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
3352 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
3351 Stability Analysis in a Fractional Order Delayed Predator-Prey Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.

Keywords: Fractional predator-prey model, laplace transform, characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
3350 Stability Analysis of Linear Fractional Order Neutral System with Multiple Delays by Algebraic Approach

Authors: Lianglin Xiong, Yun Zhao, Tao Jiang

Abstract:

In this paper, we study the stability of n-dimensional linear fractional neutral differential equation with time delays. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. An example is provided to show the effectiveness of the approach presented in this paper.

Keywords: Fractional neutral differential equation, Laplace transform, characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
3349 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity

Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif

Abstract:

In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.

Keywords: Thermoelasticity, three-dimensional, Laplace transforms, Fourier transforms, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
3348 Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet

Authors: M. A. Koroma, S. Widatalla, A. F. Kamara, C. Zhang

Abstract:

Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet.

Keywords: Adomian polynomials, Laplace Adomian decomposition method, Padé Approximant, Shrinking sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
3347 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: Microstretch, deflection, exponential load, Laplace transforms, Residue theorem, simply supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890
3346 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform

Authors: Vijaya Prakash.A.M, K.S.Gurumurthy

Abstract:

In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].

Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102
3345 Fast Cosine Transform to Increase Speed-up and Efficiency of Karhunen-Loève Transform for Lossy Image Compression

Authors: Mario Mastriani, Juliana Gambini

Abstract:

In this work, we present a comparison between two techniques of image compression. In the first case, the image is divided in blocks which are collected according to zig-zag scan. In the second one, we apply the Fast Cosine Transform to the image, and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the Karhunen-Loève transform is applied to mentioned blocks. On the other hand, we present three new metrics based on eigenvalues for a better comparative evaluation of the techniques. Simulations show that the combined version is the best, with minor Mean Absolute Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to Noise Ratio (PSNR) and better image quality. Finally, new technique was far superior to JPEG and JPEG2000.

Keywords: Fast Cosine Transform, image compression, JPEG, JPEG2000, Karhunen-Loève Transform, zig-zag scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4852
3344 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product

Authors: Xingping Sheng

Abstract:

Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.

Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
3343 The Positive Solution for Singular Eigenvalue Problem of One-dimensional p-Laplace Operator

Authors: Lv Yuhua

Abstract:

In this paper, by constructing a special cone and using fixed point theorem and fixed point index theorem of cone, we get the existence of positive solution for a class of singular eigenvalue value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords: Cone, fixed point index, eigenvalue problem, p-Laplace operator, positive solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
3342 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy

Abstract:

In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: Standard finite difference schemes, non–standard schemes, Laplace equation, Dirichlet boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
3341 A New Technique for Progressive ECG Transmission using Discrete Radon Transform

Authors: Amine Naït-Ali

Abstract:

The aim of this paper is to present a new method which can be used for progressive transmission of electrocardiogram (ECG). The idea consists in transforming any ECG signal to an image, containing one beat in each row. In the first step, the beats are synchronized in order to reduce the high frequencies due to inter-beat transitions. The obtained image is then transformed using a discrete version of Radon Transform (DRT). Hence, transmitting the ECG, leads to transmit the most significant energy of the transformed image in Radon domain. For decoding purpose, the receptor needs to use the inverse Radon Transform as well as the two synchronization frames. The presented protocol can be adapted for lossy to lossless compression systems. In lossy mode we show that the compression ratio can be multiplied by an average factor of 2 for an acceptable quality of reconstructed signal. These results have been obtained on real signals from MIT database.

Keywords: Discrete Radon Transform, ECG compression, synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
3340 Laplace Transformation on Ordered Linear Space of Generalized Functions

Authors: K. V. Geetha, N. R. Mangalambal

Abstract:

Aim. We have introduced the notion of order to multinormed spaces and countable union spaces and their duals. The topology of bounded convergence is assigned to the dual spaces. The aim of this paper is to develop the theory of ordered topological linear spaces La,b, L(w, z), the dual spaces of ordered multinormed spaces La,b, ordered countable union spaces L(w, z), with the topology of bounded convergence assigned to the dual spaces. We apply Laplace transformation to the ordered linear space of Laplace transformable generalized functions. We ultimately aim at finding solutions to nonhomogeneous nth order linear differential equations with constant coefficients in terms of generalized functions and comparing different solutions evolved out of different initial conditions. Method. The above aim is achieved by • Defining the spaces La,b, L(w, z). • Assigning an order relation on these spaces by identifying a positive cone on them and studying the properties of the cone. • Defining an order relation on the dual spaces La,b, L(w, z) of La,b, L(w, z) and assigning a topology to these dual spaces which makes the order dual and the topological dual the same. • Defining the adjoint of a continuous map on these spaces and studying its behaviour when the topology of bounded convergence is assigned to the dual spaces. • Applying the two-sided Laplace Transformation on the ordered linear space of generalized functions W and studying some properties of the transformation which are used in solving differential equations. Result. The above techniques are applied to solve non-homogeneous n-th order linear differential equations with constant coefficients in terms of generalized functions and to compare different solutions of the differential equation.

Keywords: Laplace transformable generalized function, positive cone, topology of bounded convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
3339 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

Authors: Won Sup Kim, Xue-Mei Cui, Seung Kee Han

Abstract:

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

Keywords: Chaotic oscillator, complex network, inverse coherence matrix, network estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
3338 Uncontrollable Inaccuracy in Inverse Problems

Authors: Yu. Menshikov

Abstract:

In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solutions are analyzed. Several methods for removing the influence of uncontrollable inaccuracy have been suggested. 

Keywords: Inverse problems, uncontrollable inaccuracy, filtration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124