{"title":"Design Techniques and Implementation of Low Power High-Throughput Discrete Wavelet Transform Tilters for JPEG 2000 Standard","authors":"Grigorios D. Dimitroulakos, N. D. Zervas, N. Sklavos, Costas E. Goutis","volume":16,"journal":"International Journal of Computer and Information Engineering","pagesStart":1279,"pagesEnd":1287,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/6191","abstract":"In this paper, the implementation of low power,\r\nhigh throughput convolutional filters for the one dimensional\r\nDiscrete Wavelet Transform and its inverse are presented. The\r\nanalysis filters have already been used for the implementation of a\r\nhigh performance DWT encoder [15] with minimum memory\r\nrequirements for the JPEG 2000 standard. This paper presents the\r\ndesign techniques and the implementation of the convolutional filters\r\nincluded in the JPEG2000 standard for the forward and inverse DWT\r\nfor achieving low-power operation, high performance and reduced\r\nmemory accesses. Moreover, they have the ability of performing\r\nprogressive computations so as to minimize the buffering between\r\nthe decomposition and reconstruction phases. The experimental\r\nresults illustrate the filters- low power high throughput characteristics\r\nas well as their memory efficient operation.","references":"[1] I. Daubechies, \"Ten Lectures on Wavelets,\" CBMS-NSF Series in\r\nApplied Mathematics, 61, SIAM, Philadelphia, 1992.\r\n[2] Munteanu, J. Cornelis, G. V. der Auwera, P. Cristea, \"Wavelet based\r\nlossless compression scheme with progressive transmission capability,\"\r\nInternational Journal of Imaging Systems and Technology, vol. 10, pp.\r\n76-85, January 1999.\r\n[3] Said and W. A. Pearlman, \"A new fast and efficient image codec based\r\non set partitioning in hierarchical trees,\" IEEE Trans. Circuits and Syst.\r\nVideo Technol., vol. 6, pp. 243-250, June 1996.\r\n[4] J. M. Shapiro, \"Embedded image coding using zerotrees of wavelet\r\ncoefficients,\" IEEE Trans. On Signal Processing, vol. 41, pp. 3445-\r\n3462, Dec. 1993.\r\n[5] JPEG 2000 Image Coding System, ISO\/IEC FCD15444-1, 2000.\r\n[6] MPEG-4, ISO\/IEC JTC1\/SC29\/WG11, FCD 14496, \"Coding of Moving\r\nPictures and Audio,\" May 1998.\r\n[7] C. Chakrabarti and M. Vishwanath, \"Efficient realizations of the discrete\r\nand continuous wavelet transforms: from single chip implementations to\r\nSIMD parallel computers,\" IEEE Trans. Signal Processing, vol. 43,\r\nno.3, pp. 759-771, March 1995.\r\n[8] C. Chakrabarti and M. Vishwanath and R. M. Owens, \"Architectures for\r\nwavelet transforms: A survey,\" Journal of VLSI Signal Processing, vol.\r\n4, no. 2, pp 171-192, 1996.\r\n[9] Vishwanath, R. M. Owens, M. J. Irwin \"VLSI architectures for the\r\ndiscrete wavelet transform\", IEEE Trans. Circuits and Syst. II, vol. 42,\r\nno. 5, May 1995.\r\n[10] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y.\r\nAndreopoulos and C.E. Goutis, \"Evaluation of design alternatives for\r\nthe 2-D-discrete wavelet transform\", IEEE Trans. Circuits and Syst.\r\nVideo Technol., vol. 11, no. 2, pp. 1246-1262, December 2001.\r\n[11] F. Catthoor, S. Wuytack, E. De Greff, F. Balasa, L.Nachtergale, A.\r\nVandecappele, \"Custom Memory Management Methodology -\r\nExploration of Memory management Organization for Embedded\r\nMultimedia System Design\", Kluwer Academic Publishers, 1998.\r\n[12] S. Mallat, \"A Wavelet Tour of Signal Processing\", 2nd Edition.\r\n[13] A. Skodras, C. Christopoulos, T. Ebrahimi, \"The JPEG 2000 still image\r\ncompression standard\", in IEEE Signal Processing Magazine, vol. 18,\r\nno. 5, pp. 36-58, Sept. 2001.\r\n[14] G. Lafruit, L. Nachtergale, J. Bormans, M. Engels, I. Bolsens, \"Optimal\r\nmemory organizations for scalable texture codecs in MPEG-4\", IEEE\r\nTrans. Circuits and Syst. Video Technol., vol. 9, no. 2, pp. 218-242,\r\nMarch 1999.\r\n[15] G. Dimitroulakos, M. D. Galanis, A. Milidonis and C.E. Goutis, \"A\r\nhigh- throughput memory efficient architecture for computing the tilebased\r\n2D Discrete Wavelet Transform for the JPEG 2000 Standard\",\r\nIntegration the VLSI Journal, Elsevier Publishers, vol. 39, no. 1, pp. 1-\r\n11, 2005.\r\n[16] C. Chakrabarti and C. Mumford, \"Efficient realizations of analysis and\r\nsynthesis filters based on the 2-D discrete wavelet transform,\" in Proc.\r\nInt. Conf. On Acoustics, Speech and Signal processing, pp. 3256-3259,\r\nMay 1996.\r\n[17] F. Fridman and E. S. Manolakos, \"Distributed memory and control VLSI\r\narchitectures for the 1-D discrete wavelet transform,\" in IEEE VLSI\r\nSignal Processing VII, pp. 388-397, 1994.\r\n[18] Grzeszczak, M. K. Mandal, S. Panchanathan, and T. Yeap, \"VLSI\r\nimplementation of discrete wavelet transform,\" IEEE Trans. VLSI Syst.,\r\nvol. 4, pp. 421-433, Dec. 1996.\r\n[19] G. Knowles, \"VLSI architecture for the discrete wavelet transform\",\r\nElectronic Letters, vol. 26, no.5, pp. 1184-1185, July 1990.\r\n[20] R. Lang, E. Plesner, H. Schroder, and A. Spray, \"An efficient systolic\r\narchitecture for the one-dimensional wavelet transform,\" in Proc. SPIE\r\nConf. Wavelet Applicat., pp. 925-935, April 1994.\r\n[21] A. S. Lewis and G. Knowles, \"VLSI architecture for 2-D Daubechies\r\nwavelet transform without multipliers,\" Electronic Letters, vol. 27, no.5,\r\npp. 171-173, Jan 1991.\r\n[22] C.M. Brislawn, \"Classification of nonexpansive symmetric extension\r\ntransforms for multirate filter banks\" Tech. Rep. LA-UR-94-1747, Los\r\nAlamos, Nat. Laboratory, May 1994.\r\n[23] T. Denk and K. Parhi, \"Calculation of minimum number of registers in\r\n2-D discrete wavelet transforms using lapped block processing,\" in\r\nProc. Int. Symp. Circuits Syst., pp. 77-81, 1994.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 16, 2008"}