Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: ac-dc converter

4 Non-Isolated Direct AC-DC Converter Design with BCM-PFC Circuit

Authors: Y. Kobori, L. Xing, H. Gao, N.Onozawa, S. Wu, S. N. Mohyar, Z. Nosker, H. Kobayashi, N. Takai, K. Niitsu

Abstract:

This paper proposes two types of non-isolated direct AC-DC converters. First, it shows a buck-boost converter with an H-bridge, which requires few components (three switches, two diodes, one inductor and one capacitor) to convert AC input to DC output directly. This circuit can handle a wide range of output voltage. Second, a direct AC-DC buck converter is proposed for lower output voltage applications. This circuit is analyzed with output voltage of 12V. We describe circuit topologies, operation principles and simulation results for both circuits.

Keywords: AC-DC converter, Buck-boost converter, Buck converter, PFC, BCM PFC circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4326
3 Transformerless AC-DC Converter

Authors: Saisundar. S., I Made Darmayuda, Zhou Jun, Krishna Mainali, Simon Ng Sheung Yan, Eran Ofek

Abstract:

This paper compares the recent transformerless ACDC power converter architectures and provides an assessment of each. A prototype of one of the transformerless AC-DC converter architecture is also presented depicting the feasibility of a small form factor, power supply design. In this paper component selection guidelines to achieve high efficiency AC-DC power conversion are also discussed.

Keywords: AC-DC converter, digitally controlled, switched mode power supply, transformerless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5365
2 Application of Pulse Doubling in Star-Connected Autotransformer Based 12-Pulse AC-DC Converter for Power Quality Improvement

Authors: Rohollah. Abdollahi, Alireza. Jalilian

Abstract:

This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMD-s) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse ac-dc converters each of them consisting of three-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6- pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

Keywords: AC–DC converter, star-connected autotransformer, power quality, 24 pulse rectifier, Pulse Doubling, direct torquecontrolled induction motor drive (DTCIMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
1 Evaluation of Power Factor Corrected AC - DC Converters and Controllers to meet UPS Performance Index

Authors: A. Muthuramalingam, S. Himavathi

Abstract:

Harmonic pollution and low power factor in power systems caused by power converters have been of great concern. To overcome these problems several converter topologies using advanced semiconductor devices and control schemes have been proposed. This investigation is to identify a low cost, small size, efficient and reliable ac to dc converter to meet the input performance index of UPS. The performance of single phase and three phase ac to dc converter along with various control techniques are studied and compared. The half bridge converter topology with linear current control is identified as most suitable. It is simple, energy efficient because of single switch power loss and transformer-less operation of UPS. The results are validated practically using a prototype built using IGBT and analog controller. The performance for both single and three-phase system is verified. Digital implementation of closed loop control achieves higher reliability. Its cost largely depends on chosen bit precision. The minimal bit precision for optimum converter performance is identified as 16-bit with fixed-point operation. From the investigation and practical implementation it is concluded that half bridge ac – dc converter along with digital linear controller meets the performance index of UPS for single and three phase systems.

Keywords: PFC, energy efficient, half bridge, ac-dc converter, boost topology, linear current control, digital bit precision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687