Search results for: Total harmonic distortion (THD).
2441 Sensitivity and Removed THD of a Phase- Cutting Dimmer
Authors: H. Fathabadi
Abstract:
In this paper, we consider a designed and implemented phase-cutting dimmer. In fact, the dimmer is closed loop and a microcontroller calculates and then regulates the firing delay angles of each channel. Depending on the firing angle, the harmonic distortion in the input current will not comply with international standards, such as IEC 61000-3-2 (class C equipments). For solving this problem, eight harmonic compensators have been added to the dimmer. So, the proposed dimmer has a little harmonic distortion in the input current whereas conventional phase-cutting dimmers are not so. Sensitivity and removed THD of the proposed dimmer will be presented.Keywords: Dimmer, compensator, harmonic, dimming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302440 Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation
Authors: R. S. Al Abri, M. H. Albadi, M. H. Al Abri, U. K. Al Rasbi, M. H. Al Hasni, S. M. Al Shidi
Abstract:
This paper presents an analysis study on the impacts of the changes of the capacitor banks, the loss of a transformer, and the installation of distributed generation on the voltage total harmonic distortion and harmonic resonance. The study is applied in a real system in Oman, Sohar Industrial Port–C Substation Network. Frequency scan method and Fourier series analysis method are used with the help of EDSA software. Moreover, the results are compared with limits specified by national Oman distribution code.Keywords: Power quality, capacitor bank, voltage total harmonics distortion, harmonic resonance, frequency scan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20912439 Artificial Intelligent (AI) Based Cascade Multi-Level Inverter for Smart Nano Grid
Authors: S. Chatterji, S. L. Shimi
Abstract:
As wind, solar and other clean and green energy sources gain popularity worldwide, engineers are seeking ways to make renewable energy systems more affordable and to integrate them with existing ac power grids. In the present paper an attempt has been made for integrating the PV arrays to the smart nano grid using an artificial intelligent (AI) based solar powered cascade multilevel inverter. The AI based controller switching scheme has been used for improving the power quality by reducing the Total Harmonic Distortion (THD) of the multi-level inverter output voltage.Keywords: Artificial Intelligent (AI), Solar Powered Multi-level Inverter, Smart nano grid, Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34672438 Harmonic Pollution Control of the Electrical Network by Three-Phase Shunt Active Filter: Comparative Study of Controls, by Hysteresis and by Duty Cycle Modulation
Authors: T. Patrice Nna Nna, S. Ndjakomo Essiane, S. Pérabi Ngoffé, F. Amigue Fissou
Abstract:
This paper deals with the harmonic decontamination of current in an electrical grid by an active shunt filter in order to improve power quality. The contribution of this paper is mainly based on the proposal of a control strategy for an active filter based on Duty Cycle Modulation (DCM). First, three-monophase method is applied for the identification of disturbing currents. A Simulink model of this method is given for one phase of the grid. Secondly, two orders were designed: the first one is the Hysteresis Control and the second one is the DCM Control. Finally, a comparative study of the two controls was performed. The results obtained show a significant improvement in the rate of harmonic distortion for both controls. The harmonic distortion for the Hysteresis control is limited by the non-controllability of the switching frequencies of the inverter's switches and reduces the harmonic distortion rate (THD) to 3.12% as opposed to the DCM control which limits the THD to 2.82% which makes it better.Keywords: Harmonic pollution, shunt active filter, hysteresis, Duty Cycle Modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6782437 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization
Authors: N. Janjamraj, A. Oonsivilai
Abstract:
This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25442436 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation
Authors: Khattab Ibrahim Al Qaisi, Nicholas Bowring
Abstract:
This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.
Keywords: SVPWM, THD, DC-AC Inverter, Sampling Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30062435 A Literature Assessment of Multi-Level Inverters
Authors: P. Kiruthika, K. Ramani
Abstract:
Multi-Level Inverter technology has been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of lower rating can be used thereby enabling the schemes to be used for high voltage applications. Reduced Total Harmonic Distortion (THD).Since the dv/dt is low; the Electromagnetic Interference from the scheme is low. To avoid the switching losses Lower switching frequencies can be used. In this paper present a survey of various topologies, control strategy and modulation techniques used by these inverters. Here the regenerative and superior topologies are also discussed.
Keywords: Cascaded H-bridge Multi-Level Inverter, Diode Clamped Multi-Level Inverter, Flying Capacitors Multi- Level Inverter, Multi-Level Inverter, Total Harmonic Distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36732434 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network
Authors: Abed Sami Qawasme, Sameer Khader
Abstract:
This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.
Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6502433 Power Factor Correction Based on High Switching Frequency Resonant Power Converter
Authors: B. Sathyanandhi, P. M. Balasubramaniam
Abstract:
This paper presents Buck-Boost converter topology to maintain the input power factor by using the power factor stage control and regulation stage control. Suppose, if we are using the RL load the power factor will be reduced due to the presence of total harmonic distortion in the current wave. To improve the power factor the current waveform should follow the fundamental component of the voltage waveform. These can be achieved by using the high -frequency power converter. Based on the resonant circuit the converter is able to perform the function of Buck, Boost, and buck-boost converter. Here ,we have used Buck-Boost converter, because, the buck-boost converter has more advantages than the boost converter. Here the switching action of the power converter can take place by using the external zero comparator PFC stage control. The power converter consisting of the resonant circuit which is used to control the output voltage gain of the converter. The power converter is operated at a very high switching frequency in the range of 400KHz in order to overcome the switching losses of the power converter. Due to presence of high switching frequency, the power factor will improve. Therefore, the total harmonics distortion present in the current waveform has also reduced. These results has generated in the form of simulation by using MATLAB/SIMULINK software. Similar to the Buck and Boost converters, the operation of the Buck-Boost has best understood, in terms of the inductor's "reluctance" for allowing rapid change in current, which also reduces the Total Harmonic Distortion (THD) in the input current waveform, which can improve the input Power factor, based on the type of load used.
Keywords: Buck-boost converter, High switching frequency, Power factor correction, power factor correction stage Regulation stage, Total harmonic distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13892432 A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter
Authors: Bachir Belmadani, Rachid Taleb, Zinelaabidine Boudjema, Adil Yahdou
Abstract:
Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.Keywords: Flying capacitor inverter, multicarrier sinusoidal pulse width modulation, space vector modulation, total harmonic distortion, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17622431 Low Voltage Squarer Using Floating Gate MOSFETs
Authors: Rishikesh Pandey, Maneesha Gupta
Abstract:
A new low-voltage floating gate MOSFET (FGMOS) based squarer using square law characteristic of the FGMOS is proposed in this paper. The major advantages of the squarer are simplicity, rail-to-rail input dynamic range, low total harmonic distortion, and low power consumption. The proposed circuit is biased without body effect. The circuit is designed and simulated using SPICE in 0.25μm CMOS technology. The squarer is operated at the supply voltages of ±0.75V . The total harmonic distortion (THD) for the input signal 0.75Vpp at 25 KHz, and maximum power consumption were found to be less than 1% and 319μW respectively.Keywords: Analog signal processing, floating gate MOSFETs, low-voltage, Spice, squarer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20052430 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network
Authors: A. Morsli, A.Tlemçani, N. Ould Cherchali, M. S. Boucherit
Abstract:
This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to a shunt Active Power Filter (sAPF) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.Keywords: Fuzzy logic controller, P-Q method, Pulse Width Modulation (PWM), shunt Active Power Filter (sAPF), Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23892429 Effects of Capacitor Bank Defects on Harmonic Distortion and Park's Pattern Analysis in Induction Motors
Authors: G. Das, S. Das, P. Purkait, A. Dasgupta, M. Kumar
Abstract:
Properly sized capacitor banks are connected across induction motors for several reasons including power factor correction, reducing distortions, increasing capacity, etc. Total harmonic distortion (THD) and power factor (PF) are used in such cases to quantify the improvements obtained through connection of the external capacitor banks. On the other hand, one of the methods for assessing the motor internal condition is by the use of Park-s pattern analysis. In spite of taking adequate precautionary measures, the capacitor banks may sometimes malfunction. Such a minor fault in the capacitor bank is often not apparently discernible. This may however, give rise to substantial degradation of power factor correction performance and may also damage the supply profile. The case is more severe with the fact that the Park-s pattern gets distorted due to such external capacitor faults, and can give anomalous results about motor internal fault analyses. The aim of this paper is to present simulation and hardware laboratory test results to have an understanding of the anomalies in harmonic distortion and Park-s pattern analyses in induction motors due to capacitor bank defects.
Keywords: Capacitor bank, harmonic distortion, induction motor, Park's pattern, PSCAD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39672428 Comparative Review of Modulation Techniques for Harmonic Minimization in Multilevel Inverter
Authors: M. Suresh Kumar, K. Ramani
Abstract:
This paper proposed the comparison made between Multi-Carrier Pulse Width Modulation, Sinusoidal Pulse Width Modulation and Selective Harmonic Elimination Pulse Width Modulation technique for minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. In Multicarrier Pulse Width Modulation method by using Alternate Position of Disposition scheme for switching pulse generation to Multi-Level Inverter. Another carrier based approach; Sinusoidal Pulse Width Modulation method is also implemented to define the switching pulse generation system in the multi-level inverter. In Selective Harmonic Elimination method using Genetic Algorithm and Particle Swarm Optimization algorithm for define the required switching angles to eliminate low order harmonics from the inverter output voltage waveform and reduce the total harmonic distortion value. So, the results validate that the Selective Harmonic Elimination Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform in compared with Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method. In this paper, comparison of simulation results shows that the Selective Harmonic Elimination method can attain optimal harmonic minimization solution better than Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method.Keywords: Multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation, Multi-Carrier Pulse Width Modulation, Total Harmonic Distortion, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30032427 Harmonic Comparison between Fluorescent and WOLED (White Organic LED) Lamps
Authors: Hari Maghfiroh, Fadhila Tresna Nugraha, Harry Prabowo
Abstract:
Fluorescent and WOLED are widely used because it consumes less energy. However, both lamps cause a harmonics because it has semiconductors components. Harmonic is a distorted sinusoidal electric wave and cause excess heat. This study compares the amount of harmonics generated by both lamps. The test shows that both lamps have THDv(Total Harmonics Distortion of Voltage) almost the same with average 2.5% while the average of WOLED's THDi(Total Harmonics Distortion of Current) is lower than fluorescent has. The average WOLED's THDi is 29.10 % and fluorescent's 'THDi is 87. 23 %.Keywords: Fluorescent, harmonic, power factor, WOLED
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18372426 Mathematical Modeling of Current Harmonics Caused by Personal Computers
Authors: Rana Abdul Jabbar Khan, Muhammad Akmal
Abstract:
Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25542425 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area
Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu
Abstract:
In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for 50%, 75%, and 100% loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.Keywords: Distribution system, harmonic, technical losses, power factor (PF), total harmonic distortion (THD), residential load, medium voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31672424 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya
Abstract:
Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.
Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51232423 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter
Authors: K. G. Firouzjah, A. Sheikholeslami
Abstract:
The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.
Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18592422 SVPWM Based Two Level VSI for Micro Grids
Authors: P. V. V. Rama Rao, M. V. Srikanth, S. Dileep Kumar Varma
Abstract:
With advances in solid-state power electronic devices and microprocessors, various pulse-width-modulation (PWM) techniques have been developed for industrial applications. This paper presents the comparison of two different PWM techniques, the sinusoidal PWM (SPWM) technique and the space-vector PWM (SVPWM) technique applied to two level VSI for micro grid applications. These two methods are compared by discussing their ease of implementation and by analyzing the output harmonic spectra of various output voltages (line-to-neutral voltages, and line-to-line voltages) and their total harmonic distortion (THD). The SVPWM technique in the under-modulation region can increase the fundamental output voltage by 15.5% over the SPWM technique.
Keywords: SPWM, SVPWM, VSI, Modulation Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32542421 Closed Loop Control of Bridgeless Cuk Converter Using Fuzzy Logic Controller for PFC Applications
Authors: Nesapriya. P., S. Rajalaxmi
Abstract:
This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.
Keywords: Fuzzy Logic Controller (FLC), Bridgeless rectifier, Cuk converter, Pulse Width Modulation (PWM), Power Factor Correction, Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41112420 Advanced Pulse Width Modulation Techniques for Z Source Multi Level Inverter
Authors: B. M. Manjunatha, D. V. Ashok Kumar, M. Vijay Kumar
Abstract:
This paper proposes five level diode clamped Z source Inverter. The existing PWM techniques used for ZSI are restricted for two level. The two level Z Source Inverter have high harmonic distortions which effects the performance of the grid connected PV system. To improve the performance of the system the number of voltage levels in the output waveform need to be increased. This paper presents comparative analysis of a five level diode clamped Z source Inverter with different carrier based Modified Pulse Width Modulation techniques. The parameters considered for comparison are output voltage, voltage gain, voltage stress across switch and total harmonic distortion when powered by same DC supply. Analytical results are verified using MATLAB.
Keywords: Diode Clamped, Pulse Width Modulation, total harmonic distortion, Z Source Inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23792419 Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT
Authors: V. Joshi Manohar, P. Sujatha, K. S. R. Anjaneyulu
Abstract:
Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.
Keywords: Cascade H-Bridge Inverter (CHB), Continuous Genetic Algorithm (C-GA), Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Total Harmonic Distortion (%THDv), Wavelet Transform (WT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29432418 New Classes of Salagean type Meromorphic Harmonic Functions
Authors: Hakan Bostancı, Metin Öztürk
Abstract:
In this paper, a necessary and sufficient coefficient are given for functions in a class of complex valued meromorphic harmonic univalent functions of the form f = h + g using Salagean operator. Furthermore, distortion theorems, extreme points, convolution condition and convex combinations for this family of meromorphic harmonic functions are obtained.
Keywords: Harmonic mappings, Meromorphic functions, Salagean operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302417 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs
Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary
Abstract:
This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.
Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21652416 Investigating the Effect of Using Capacitors in the Pumping Station on the Harmonic Contents (Case Study: Kafr El - Shikh Governorate, Egypt)
Authors: Khaled M. Fetyan
Abstract:
Power Factor (PF) is one of the most important parameters in the electrical systems, especially in the water pumping station. The low power factor value of the water pumping stations causes penalty for the electrical bill. There are many methods use for power factor improvement. Each one of them uses a capacitor on the electrical power network. The position of the capacitors is varied depends on many factors such as; voltage level and capacitors rating. Adding capacitors on the motor terminals increase the supply power factor from 0.8 to more than 0.9 but these capacitors cause some problems for the electrical grid network, such as increasing the harmonic contents of the grid line voltage. In this paper the effects of using capacitors in the water pumping stations to improve the power factor value on the harmonic contents of the electrical grid network are studied. One of large water pumping stations in Kafr El-Shikh Governorate in Egypt was used, as a case study. The effect of capacitors on the line voltage harmonic contents is measured. The station uses capacitors to improve the PF values at the 1 lkv grid network. The power supply harmonics values are measured by a power quality analyzer at different loading conditions. The results showed that; the capacitors improved the power factor value of the feeder and its value increased than 0.9. But the THD values are increased by adding these capacitors. The harmonic analysis showed that; the 13th, 17th, and 19th harmonics orders are increased also by adding the capacitors.
Keywords: Water pumping stations, power factor improvement, total harmonic distortions (THD), power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27632415 The Comparison Study of Harmonic Detection Methods for Shunt Active Power Filters
Authors: K-L. Areerak, K-N. Areerak
Abstract:
The paper deals with the comparison study of harmonic detection methods for a shunt active power filter. The %THD and the power factor value at the PCC point after compensation are considered for the comparison. There are three harmonic detection methods used in the paper that are synchronous reference frame method, synchronous detection method, and DQ axis with Fourier method. In addition, the ideal current source is used to represent the active power filter by assuming an infinitely fast controller action of the active power filter. The simulation results show that the DQ axis with Fourier method provides the minimum %THD after compensation compared with other methods. However, the power factor value at the PCC point after compensation is slightly lower than that of synchronous detection method.Keywords: Harmonic detection, shunt active power filter, DQaxis with Fourier, power factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33262414 Harmonic Reduction In Three-Phase Parallel Connected Inverter
Authors: M.A.A. Younis, N. A. Rahim, S. Mekhilef
Abstract:
This paper presents the design and analysis of a parallel connected inverter configuration of. The configuration consists of parallel connected three-phase dc/ac inverter. Series resistors added to the inverter output to maintain same current in each inverter of the two parallel inverters, and to reduce the circulating current in the parallel inverters to the minimum. High frequency third harmonic injection PWM (THIPWM) employed to reduce the total harmonic distortion and to make maximum use of the voltage source. DSP was used to generate the THIPWM and the control algorithm for the converter. Selected experimental results have been shown to validate the proposed system.Keywords: Three-phase inverter, Third harmonic injection PWM, inverters parallel connection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38052413 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling
Authors: M. Almutairi, S. Hadjiloucas
Abstract:
The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.
Keywords: Harmonics, passive filter, power factor, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22232412 A Novel Three Phase Hybrid Unidirectional Rectifier for High Power Factor Applications
Authors: P. Nammalvar, P. Meganathan
Abstract:
This paper presents a hybrid three phase rectifier for high power factor application. This rectifier is composed by zero voltage transition (ZVT) and zero current transition (ZCT) boost converter with three phase diode bridge rectifier, in parallel with a six pulse three phase pulse width modulation (PWM) controlled rectifier. The proposed topology is capable of high power factor with DC output voltage regulation by providing sinusoidal input. Also, it increases the overall efficiency of the new hybrid rectifier to 94.56% and the total harmonic distortion of the hybrid structure varies from 0% to 16% at nominal output power. This topology was simulated in MATLAB/SIMULINK environment and the output waveforms presented with experimental result.
Keywords: Hybrid Rectifier, Total Harmonic Distortion, Power Quality, Pulse Width Modulation (PWM), Unidirectional Rectifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518