Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30

Search results for: NOx emission

30 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164
29 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

Authors: M. Mourad, K. Abdelgawwad

Abstract:

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Keywords: Gasoline engine performance, emissions, alcohol blends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217
28 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases

Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim

Abstract:

This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.

Keywords: CO, efficiency, gas turbine, NOx, UHC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
27 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission

Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel

Abstract:

The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.

Keywords: Ceramic coating, material characterization, engine performance, exhaust emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
26 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: Jatropha Curcus, computational analysis, emissions, biofuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
25 Effects of Engine Parameters and Fuel Compositions on Ignition Timing and Emission Characteristics of HCCI Engine

Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed

Abstract:

In this research, the effects of the engine parameters like compression ratios and steam injection on igniting timing and emission characteristics have been investigated numerically. The in-cylinder temperature and pressure at four different compression ratios have been compared with numerical results, and they show a good agreement with the published data. Two different fuels have been used in this study: Isooctane (IC8H18), and ethanol (C2H5OH). The increasing of the compression ratio (CR) advances the ignition timing, decreases the burn duration and increases the temperature and the pressure. The injection of water vapor lower than 40% decreased the peak temperature and slowed the combustion rate which leads to a lower NOx emission.

Keywords: Compression ratio, emission, HCCI engine, ignition timing, steam injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
24 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPGCNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 10^0 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: Diesel engine, Hydrogen, BTHE, BSEC, Soot, NOx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3954
23 Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines

Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita

Abstract:

The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.

Keywords: Combustion, Ericsson, thermodynamic analysis, turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
22 Low NOx Combustion Technology for Minimizing NOx

Authors: Sewon Kim, Changyeop Lee, Minjun Kwon

Abstract:

A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology showed very low NOx emission level, about 12 ppm, when light oil is used as a fuel.

Keywords: Burner, low NOx, liquid fuel, partial oxidation, fuel rich.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
21 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: Evaporation, Injection, Selective Catalytic Reduction (SCR), Thermolysis, UWS (Urea-Water-Solution).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
20 Numerical Predictionon the Influence of Mixer on the Performance of Urea-SCR System

Authors: Kyoungwoo Park, Chol-Ho Hong, Sedoo Oh, Seongjoon Moon

Abstract:

Diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filtersin order to meet more stringer diesel emission standard. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the Urea-SCR device for diesel passenger cars and light duty vehicles. In the present study, the effects of the mixer on the efficiency of urea-SCR System (i.e., NH3uni- formityindex (NH3 UI) is investigated by predicting the transport phenomena in the urea-SCR system. The three dimensional Eulerian-Lagrangian CFD simulationfor internal flow and spray characteristics in front of SCR is carried out by using STAR-CCM+ 7.06 code. In addition, the paper proposes a method to minimize the wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading.

Keywords: Computational fluid dynamics, Multi-phase flow, NH3 uniformity index, Urea-SCR system, Urea-water-solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296
19 Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.

Keywords: Transesterification, PME, wear of engine parts, Metal traces and AAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
18 Effect of Cooled EGR in Combustion Characteristics of a Direct Injection CI Engine Fuelled with Biodiesel Blend

Authors: Sankar Chandrasekar, Rana Niranchan V.S., Joseph Sidharth Leon

Abstract:

As the demand and prices of various petroleum products have been on the rise in recent years, there is a growing need for alternative fuels. Biodiesel, which consists of alkyl monoesters of fatty acids from vegetable oils and animal fats, is considered as an alternative to petroleum diesel. Biodiesel has comparable performance with that of diesel and has lower brake specific fuel consumption than diesel with significant reduction in emissions of CO, hydrocarbons (HC) and smoke with however, a slight increase in NOx emissions. This paper analyzes the effect of cooled exhaust gas recirculation in the combustion characteristics of a direct injection compression ignition engine using biodiesel blended fuel as opposed to the conventional system. The combustion parameters such as cylinder pressure, heat release rate, delay period and peak pressure were analyzed at various loads. The maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend the maximum rate of pressure rise was found to be higher for diesel at higher engine loads.

Keywords: Cylinder pressure, delay period, EGR, heat release.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
17 Impacts of Biofuels on Air Quality: Northern Portugal Case Study

Authors: Ribeiro I., Tavares A.M., Sá E., Lopes M.

Abstract:

The increased use of biodiesel implies variations on both greenhouse gases and air pollutant emissions. Some studies point out that the use of biodiesel blends on diesel can help in controlling air pollution and promote a reduction of CO2 emissions. Reductions on PM, SO2, VOC and CO emissions are also expected, however NOx emissions may increase, which may potentiate O3 formation. This work aims to assess the impact of the biodiesel use on air quality, through a numerical modeling study, taking the Northern region of Portugal as a case study. The emission scenarios are focused on 2008 (baseline year) and 2020 (target year of Renewable Energy Directive-RED) and on three biodiesel blends (B0, B10 and B20). In a general way the use of biodiesel by 2020 will reduce the CO2 and air pollutants emissions in the Northern Portugal, improving air quality. However it will be in a very small extension.

Keywords: air quality, biodiesel, emission scenarios, RED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
16 Reduction of Emissions of Nitrogen Oxides from Traffic

Authors: Frantisek Bozek, Jiri Dvorak, Jaromir Mares, Hana Malachova

Abstract:

The value of emission factor was calculated in the older type of Diesel engine operating on an engine testing bench and then compared with the parameters monitored under similar conditions when the EnviroxTM additive was applied. It has been found out that the additive based on CeO2 nanoparticles reduces emission of NOx. The dependencies of NOx emissions on reduced torque, engine power and revolutions have been observed as well.

Keywords: Additive, air, cerium dioxide, emission factor, emissions, nanoparticles, nitrogen oxides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
15 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
14 Simultaneously Reduction of NOx and Soot Emissions in a DI Heavy Duty diesel Engine Operating at High Cooled EGR Rates

Authors: Sh. Khalilarya, S. Jafarmadar, H. Khatamnezhad, Gh. Javadirad, M. Pourfallah

Abstract:

One promising way to achieve low temperature combustion regime is the use of a large amount of cooled EGR. In this paper, the effect of injection timing on low temperature combustion process and emissions were investigated via three dimensional computational fluid dynamics (CFD) procedures in a DI diesel engine using high EGR rates. The results show when increasing EGR from low levels to levels corresponding to reduced temperature combustion, soot emission after first increasing, is decreased beyond 40% EGR and get the lowest value at 58% EGR rate. Soot and NOx emissions are simultaneously decreased at advanced injection timing before 20.5 ºCA BTDC in conjunction with 58% cooled EGR rate in compared to baseline case.

Keywords: Diesel Engine, Low Temperature Combustion, High Cooled EGR Rates, Combustion, Emissions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
13 Performance Evaluation of a Diesel Engine Fueled with Methyl Ester of shea Butter

Authors: Christopher C. Enweremadu, Hilary L. Rutto, Najeem Peleowo

Abstract:

Biodiesel as an alternative fuel for diesel engines has been developed for some three decades now. While it is gaining wide acceptance in Europe, USA and some parts of Asia, the same cannot be said of Africa. With more than 35 countries in the continent depending on imported crude oil, it is necessary to look for alternative fuels which can be produced from resources available locally within any country. Hence this study presents performance of single cylinder diesel engine using blends of shea butter biodiesel. Shea butter was transformed into biodiesel by transesterification process. Tests are conducted to compare the biodiesel with baseline diesel fuel in terms of engine performance and exhaust emission characteristics. The results obtained showed that the addition of biodiesel to diesel fuel decreases the brake thermal efficiency (BTE) and increases the brake specific fuel consumption (BSFC). These results are expected due to the lower energy content of biodiesel fuel. On the other hand while the NOx emissions increased with increase in biodiesel content in the fuel blends, the emissions of carbon monoxide (CO), un-burnt hydrocarbon (UHC) and smoke opacity decreased. The engine performance which indicates that the biodiesel has properties and characteristics similar to diesel fuel and the reductions in exhaust emissions make shea butter biodiesel a viable additive or substitute to diesel fuel.

Keywords: Biodiesel, diesel engine, engine performance and emission, shea butter, transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
12 Experimental Investigations on the Influence of Properties of Jatropha Biodiesel on Performance, Combustion, and Emission Characteristics of a DI-CI Engine

Authors: P. V. Rao

Abstract:

The aim of the present research work is to investigate the influence of Jatropha biodiesel properties on various characteristics of a direct injection compression ignition engine. The experiments were performed at different engine operating regimes with the injection timing prescribed by the engine manufacturer for diesel fuel. The engine characteristics with Jatropha biodiesel were compared against those obtained using diesel fuel. From the results, it is observed that the biodiesel performance and emissions are lower than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids and the advanced injection caused by the higher bulk modulus (or density) of Jatropha biodiesel Furthermore, the possibility for reduction of NOx emissions without expensive engine modifications (hardware) was investigated. Keeping this in mind, the Jatropha biodiesel was preheated. The experimental results show that the retarded injection timing is necessary when using Jatropha biodiesel in order to reduce NOx emission without worsening other engine characteristics. Results also indicate improved performance with the application of preheated biodiesel. The only penalty for using preheated biodiesel is the increase of smoke (soot).

Keywords: chemical properties, combustion, exhaust emissions, Jatropha biodiesel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
11 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim

Abstract:

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
10 Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel

Authors: S. Baghdar Hosseini, K. Bashirnezhad, A. R. Moghiman, Y. Khazraii, N. Nikoofal

Abstract:

The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum-based fuels. Petroleum-based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing energy/foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary to look for alternative fuels which can be produced from resources available locally within the country such as alcohol, biodiesel, vegetable oils etc. Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from combustion. In the present study an experimental investigation on emission characteristic of a liquid burner system operating on several percentage of biodiesel and gas oil is carried out. Samples of exhaust gas are analysed with Testo 350 Xl. The results show that biodiesel can lower some pollutant such as CO, CO2 and particulate matter emissions while NOx emission would increase in comparison with gas oil. The results indicate there may be benefits to using biodiesel in industrial processes.

Keywords: Biodiesel, combustion, gas oil, pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
9 Experimental Investigations on the Use of Preheated Neat Karanja Oil as Fuel in a Compression Ignition Engine

Authors: Sagar Pramodrao Kadu, Rajendra H. Sarda

Abstract:

The concerns about clean environment and high oil prices driving forces for the research on alternative fuels. The research efforts directed towards improving the performance of C.I engines using vegetable oil as fuel. The paper deals results of performance of a four stroke, single cylinder C.I. engine by preheated neat Karanja oil is done from 30 o C to 100 o C. The performance of the engine was studied for a speed range between 1500 to 4000 rpm, with the engine operated under full load conditions. The performance parameters considered for comparing are brake specific fuel consumption, thermal efficiency, brake power, Nox emission of the engine. The engine offers lower thermal efficiency when it is powered by preheated neat Karanja oil at higher speed. The power developed and Nox emission increase with the increase in the fuel inlet temperature and the specific fuel consumption is higher than diesel fuel operation at all elevated fuel inlet temperature.

Keywords: Alternative fuel, Compression ignition engine, neatKaranja oil, preheating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
8 Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner

Authors: Sh.Khalilarya, H.Oryani, S.Jafarmadar, H.Khatamnezhad, A.Nemati

Abstract:

Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formation

Keywords: Mild combustion, Flameless, Numerical simulation, Burner, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
7 Sustainable Design of Impinging Premixed Slot Jets

Authors: T.T. Wong, C.W. Leung, M.C. Wong

Abstract:

Cooktop burners are widely used nowadays. In cooktop burner design, nozzle efficiency and greenhouse gas(GHG) emissions mainly depend on heat transfer from the premixed flame to the impinging surface. This is a complicated issue depending on the individual and combined effects of various input combustion variables. Optimal operating conditions for sustainable burner design were rarely addressed, especially in the case of multiple slot-jet burners. Through evaluating the optimal combination of combustion conditions for a premixed slot-jet array, this paper develops a practical approach for the sustainable design of gas cooktop burners. Efficiency, CO and NOx emissions in respect of an array of slot jets using premixed flames were analysed. Response surface experimental design were applied to three controllable factors of the combustion process, viz. Reynolds number, equivalence ratio and jet-to-vessel distance. Desirability Function Approach(DFA) is the analytic technique used for the simultaneous optimization of the efficiency and emission responses.

Keywords: optimization, premixed slot jets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
6 Experimental Investigation of Combustion Chamber Dimensions Effects on Pollutant Emission and Combustion Efficiency

Authors: K. Bashirnezhad, M. Joleini

Abstract:

The combustion chamber dimensions have important effects on pollutant emission in furnaces as a direct result of temperature distribution and maximum temperature value. In this paper the pollutant emission and the temperature distribution in two cylindrical furnaces with different dimensions (with similar length to diameter ratio) in similar condition have been investigated experimentally. The furnace fuel is gas oil that is used with three different flow rates. The results show that in these two cases the temperature increases to its maximum value quickly, and then decreases slowly. The results also show that increase in fuel flow rate cause to increase in NOx emission in each case, but this increase is greater in small furnace. With increase in fuel flow rate, CO emission decreases firstly, and then it increases. Combustion efficiency reduces with increase in fuel flow rate but the rate of reduction in small furnace is greater than large furnace. The results of axial temperature distribution have been compared with those have been obtained numerically and experimentally by Moghiman.

Keywords: Furnace dimensions, Oxides of Nitrogen, Carbonmonoxide, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
5 Trade-off Between NOX, Soot and EGR Rates for an IDI Diesel Engine Fuelled with JB5

Authors: M. Gomaa, A. J. Alimin, K. A. Kamarudin

Abstract:

Nowadays, the focus on renewable energy and alternative fuels has increased due to increasing oil prices, environment pollution, and also concern on preserving the nature. Biodiesel has been known as an attractive alternative fuel although biodiesel produced from edible oil is very expensive than conventional diesel. Therefore, the uses of biodiesel produced from non-edible oils are much better option. Currently Jatropha biodiesel (JBD) is receiving attention as an alternative fuel for diesel engine. Biodiesel is non-toxic, biodegradable, high lubricant ability, highly renewable, and its use therefore produces real reduction in petroleum consumption and carbon dioxide (CO2) emissions. Although biodiesel has many advantages, but it still has several properties need to improve, such as lower calorific value, lower effective engine power, higher emission of nitrogen oxides (NOX) and greater sensitivity to low temperature. Exhaust gas recirculation (EGR) is effective technique to reduce NOX emission from diesel engines because it enables lower flame temperature and oxygen concentration in the combustion chamber. Some studies succeeded to reduce the NOX emission from biodiesel by EGR but they observed increasing soot emission. The aim of this study was to investigate the engine performance and soot emission by using blended Jatropha biodiesel with different EGR rates. A CI engine that is water-cooled, turbocharged, using indirect injection system was used for the investigation. Soot emission, NOX, CO2, carbon monoxide (CO) were recorded and various engine performance parameters were also evaluated.

Keywords: EGR, Jatropha biodiesel, NOX, Soot emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
4 CFD Modeling of Reduction in NOX Emission Using HiTAC Technique

Authors: Abbas Khoshhal, Masoud Rahimi, Sayed Reza Shabanian, Ammar Abdulaziz Alsairafi

Abstract:

In the present study, the rate of NOx emission in a combustion chamber working in conventional combustion and High Temperature Air Combustion (HiTAC) system are examined using CFD modeling. The effect of peak temperature, combustion air temperature and oxygen concentration on NOx emission rate was undertaken. Results show that in a fixed oxygen concentration, increasing the preheated air temperature will increase the peak temperature and NOx emission rate. In addition, it was observed that the reduction of the oxygen concentration in the fixed preheated air temperature decreases the peak temperature and NOx emission rate. On the other hand, the results show that increase of preheated air temperature at various oxygen concentrations increases the NOx emission rate. However, the rate of increase in HiTAC conditions is quite lower than the conventional combustion. The modeling results show that the NOx emission rate in HiTAC combustion is 133% less than that of the conventional combustion.

Keywords: CFD Modeling, HiTAC, NOx, Combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
3 Influence of Type of Burner on NOx Emission Characteristics from Combustion of Palm Methyl Ester

Authors: Nozomu Hashimoto, Hiroyuki Nishida, Yasushi Ozawa, Tetsushiro Iwatsubo, Jun Inumaru

Abstract:

Palm methyl ester (PME) is one of the alternative biomass fuels to liquid fossil fuels. To investigate the combustion characteristics of PME as an alternative fuel for gas turbines, combustion experiments using two types of burners under atmospheric pressure were performed. One of the burners has a configuration making strong non-premixed flame, whereas the other has a configuration promoting prevaporization of fuel droplets. The results show that the NOx emissions can be reduced by employing the latter burner without accumulation of soot when PME is used as a fuel. A burner configuration promoting prevaporzation of fuel droplets is recommended for PME.

Keywords: Palm methyl ester (PME), biodiesel fuel, gas turbine, spray combustion, NOx emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
2 Comparative Emission Analysis of Gasoline/LPG Automotive Bifuel Engine

Authors: R.R. Saraf, S.S.Thipse, P.K.Saxena

Abstract:

This paper presents comparative emission study of newly introduced gasoline/LPG bifuel automotive engine in Indian market. Emissions were tested as per LPG-Bharat stage III driving cycle. Emission tests were carried out for urban cycle and extra urban cycle. Total time for urban and extra urban cycle was 1180 sec. Engine was run in LPG mode by using conversion system. Emissions were tested as per standard procedure and were compared. Corrected emissions were computed by deducting ambient reading from sample reading. Paper describes detail emission test procedure and results obtained. CO emissions were in the range of38.9 to 111.3 ppm. HC emissions were in the range of 18.2 to 62.6 ppm. Nox emissions were 08 to 3.9 ppm and CO2 emissions were from 6719.2 to 8051 ppm. Paper throws light on emission results of LPG vehicles recently introduced in Indian automobile market. Objectives of this experimental study were to measure emissions of engines in gasoline & LPG mode and compare them.

Keywords: Gasoline, LPG, Emission, Bifuel, Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
1 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils

Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole

Abstract:

The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.

Keywords: Esters, emission, performance, and vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896