Search results for: Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3635

Search results for: Genetic Algorithm

905 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
904 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
903 Fighter Aircraft Selection Using Neutrosophic Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Fuzzy set and intuitionistic fuzzy set are dealing with the imprecision and uncertainty inherent in a complex decision problem. However, sometimes these theories are not sufficient to model indeterminate and inconsistent information encountered in real-life problems. To overcome this insufficiency, the neutrosophic set, which is useful in practical applications, is proposed, triangular neutrosophic numbers and trapezoidal neutrosophic numbers are examined, their definitions and applications are discussed. In this study, a decision making algorithm is developed using neutrosophic set processes and an application is given in fighter aircraft selection as an example of a decision making problem. The estimation of the fighter aircraft selection with the neutrosophic multiple criteria decision analysis method is examined.  

Keywords: neutrosophic set, multiple criteria decision making analysis, fighter aircraft selection, MCDMA, neutrosophic numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
902 The Effect of Cow Reproductive Traits on Lifetime Productivity and Longevity

Authors: Lāsma Cielava, Daina Jonkus, Līga Paura

Abstract:

The age of first calving (AFC) is one of the most important factors that have a significant impact on cow productivity in different lactations and its whole life. A belated AFC leads to reduced reproductive performance and it is one of the main reasons for reduced longevity. Cows that calved in time period from 2001-2007 and in this time finished at least four lactations were included in the database. Data were obtained from 68841 crossbred Holstein Black and White (HM), crossbred Latvian Brown (LB), and Latvian Brown genetic resources (LBGR) cows. Cows were distributed in four groups depending on age at first calving. The longest lifespan was conducted for LBGR cows, but they were also characterized with lowest lifetime milk yield and life day milk yield. HM breed cows had the shortest lifespan, but in the lifespan of 2862.2 days was obtained in average 37916.4 kg milk accordingly 13.2 kg milk in one life day. HM breed cows were also characterized with longer calving intervals (CI) in first four lactations, but LBGR cows had the shortest CI in the study group. Age at first calving significantly affected the length of CI in different lactations (p<0.05). HM cows that first time calved >30 months old in the fourth lactation had the longest CI in all study groups (421.4 days). The LBGR cows were characterized with the shortest CI, but there was slight increase in second and third lactation. Age at first calving had a significant impact on cows’ age in each calving time. In the analysis, cow group was conducted that cows with age at first calving <24 months or in average 580.5 days at the time of fifth calving were 2156.7 days (5.9 years) old, but cows with age at first calving >30 months (932.6 days) at the time of fifth calving were 2560.9 days (7.3 years) old.

Keywords: Age at first calving, calving interval, longevity, milk yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
901 Prediction of Bath Temperature Using Neural Networks

Authors: H. Meradi, S. Bouhouche, M. Lahreche

Abstract:

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

Keywords: LD converter, bath temperature, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
900 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
899 Non-Invasive Technology on a Classroom Chair for Detection of Emotions Used for the Personalization of Learning Resources

Authors: Carlos Ramirez, Carlos Concha, Benjamin Valdes

Abstract:

Emotions are related with learning processes and physiological signals can be used to detect them for the personalization of learning resources and to control the pace of instruction. A model of relevant emotions has been developed, where specific combinations of emotions and cognition processes are connected and integrated with the concept of 'flow', in order to improve learning. The cardiac pulse is a reliable signal that carries useful information about the subject-s emotional condition; it is detected using a classroom chair adapted with non invasive EMFi sensor and an acquisition system that generates a ballistocardiogram (BCG), the signal is processed by an algorithm to obtain characteristics that match a specific emotional condition. The complete chair system is presented in this work, along with a framework for the personalization of learning resources.

Keywords: Ballistocardiogram, emotions in learning, noninvasive sensors, personalization of learning resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
898 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
897 Exploring the Combinatorics of Motif Alignments Foraccurately Computing E-values from P-values

Authors: T. Kjosmoen, T. Ryen, T. Eftestøl

Abstract:

In biological and biomedical research motif finding tools are important in locating regulatory elements in DNA sequences. There are many such motif finding tools available, which often yield position weight matrices and significance indicators. These indicators, p-values and E-values, describe the likelihood that a motif alignment is generated by the background process, and the expected number of occurrences of the motif in the data set, respectively. The various tools often estimate these indicators differently, making them not directly comparable. One approach for comparing motifs from different tools, is computing the E-value as the product of the p-value and the number of possible alignments in the data set. In this paper we explore the combinatorics of the motif alignment models OOPS, ZOOPS, and ANR, and propose a generic algorithm for computing the number of possible combinations accurately. We also show that using the wrong alignment model can give E-values that significantly diverge from their true values.

Keywords: Motif alignment, combinatorics, p-value, E-value, OOPS, ZOOPS, ANR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
896 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
895 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).

Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
894 Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace

Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai

Abstract:

In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.

Keywords: 2-link revolute manipulator, motion control, obstacle avoidance, asymptotic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851
893 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks

Authors: Oguz Ustun, Erdal Bekiroglu

Abstract:

In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM

Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
892 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by Using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, Muhammad Shakil Shaukat, Kamran Shehzad Bajwa, Abdul Qayyum Rao, Tayyab Husnain

Abstract:

Agriculture is the backbone of economy of Pakistan and cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat severe problems of insect and weed, combination of three genes namely Cry1Ac, Cry2A and EPSPS genes was transferred in locally cultivated cotton variety MNH-786 with the use of Agrobacterium mediated genetic transformation. The present study focused on the molecular screening of transgenic cotton plants at T3 generation in order to confirm integration and expression of all three genes (Cry1Ac, Cry2A and EPSP synthase) into the cotton genome. Initially, glyphosate spray assay was used for screening of transgenic cotton plants containing EPSP synthase gene at T3 generation. Transgenic cotton plants which were healthy and showed no damage on leaves were selected after 07 days of spray. For molecular analysis of transgenic cotton plants in the laboratory, the genomic DNA of these transgenic cotton plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty (Cry1Ac gene), ten out of twenty (Cry2A gene) and all twenty (EPSP synthase gene) were produced positive amplification. On the base of PCR amplification, ten transgenic plant samples were subjected to protein expression analysis through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the mRNA expression levels of Cry1Ac and EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes at T3 generation.

Keywords: Agriculture, Cotton, Transformation, Cry Genes, ELISA and PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
891 On the Noise Distance in Robust Fuzzy C-Means

Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.

Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
890 Unequal Error Protection for Region of Interest with Embedded Zerotree Wavelet

Authors: T. Hirner, J. Polec

Abstract:

This paper describes a new method of unequal error protection (UEP) for region of interest (ROI) with embedded zerotree wavelet algorithm (EZW). ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the unequal error protection (UEP) of image transmission with defined ROI and the equal error protection (EEP) over multiple noisy channels.

Keywords: embedded zerotree wavelet (EZW), equal error protection (EEP), region of interest (ROI), RS code, unequal error protection (UEP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
889 Experimental Study on Damping Ratios of in-situ Buildings

Authors: Zhiying Zhang, Chongdu Cho

Abstract:

Accurate evaluation of damping ratios involving soilstructure interaction (SSI) effects is the prerequisite for seismic design of in-situ buildings. This study proposes a combined approach to identify damping ratios of SSI systems based on ambient excitation technique. The proposed approach is illustrated with main test process, sampling principle and algorithm steps through an engineering example, as along with its feasibility and validity. The proposed approach is employed for damping ratio identification of 82 buildings in Xi-an, China. Based on the experimental data, the variation range and tendency of damping ratios of these SSI systems, along with the preliminary influence factor, are shown and discussed. In addition, a fitting curve indicates the relation between the damping ratio and fundamental natural period of SSI system.

Keywords: Damping ratio, seismic design, soil-structure interaction, system parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
888 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: Source point distribution, panel method, Rankine source, desingularized algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
887 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: Uniquely restricted matching, interval graph, design and analysis of algorithms, matching, induced matching, witness counting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
886 Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control

Authors: T. C. Kuo, Y. J. Huang, B. W. Hong

Abstract:

This paper proposes an adaptive sliding mode controller which combines adaptive control and sliding mode control to control a nonlinear robotic manipulator with uncertain parameters. We use an adaptive algorithm based on the concept of sliding mode control to alleviate the chattering phenomenon of control input. Adaptive laws are developed to obtain the gain of switching input and the boundary layer parameters. The stability and convergence of the robotic manipulator control system are guaranteed by applying the Lyapunov theorem. Simulation results demonstrate that the chattering of control input can be alleviated effectively. The proposed controller scheme can assure robustness against a large class of uncertainties and achieve good trajectory tracking performance.

Keywords: Robotic manipulators, sliding mode control, adaptive law, Lyapunov theorem, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046
885 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.

Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
884 Continuity Microplating using Image Processing

Authors: Ting-Chao Chen, Yean-Ren Hwang, Jing-Chie Lin

Abstract:

A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.

Keywords: Electroplating, image guided, image process, light source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
883 Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction

Authors: S. A. Eftekhari

Abstract:

In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.

Keywords: Dam-reservoir system, Differential quadrature method, Fluid-structure interaction, Galerkin method, Integral quadrature method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
882 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
881 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
880 Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

The paper presents the multi-element synthetic transmit aperture (MSTA) method with a small number of elements transmitting and all elements apertures in medical ultrasound imaging. As compared to the other methods MSTA allows to increase the system frame rate and provides the best compromise between penetration depth and lateral resolution. In the experiments a 128-element linear transducer array with 0.3 mm pitch excited by a burst pulse of 125 ns duration were used. The comparison of 2D ultrasound images of tissue mimicking phantom obtained using the STA and the MSTA methods is presented to demonstrate the benefits of the second approach. The results were obtained using SA algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Beamforming, frame rate, synthetic aperture, ultrasound imaging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
879 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
878 Cognitive Radio Networks (CRN): Resource Allocation Techniques Based On DNA-inspired Computing

Authors: Santosh Kumar Singh, Krishna Chandra Roy, Vibhakar Pathak

Abstract:

Spectrum is a scarce commodity, and considering the spectrum scarcity faced by the wireless-based service providers led to high congestion levels. Technical inefficiencies from pooled, since all networks share a common pool of channels, exhausting the available channels will force networks to block the services. Researchers found that cognitive radio (CR) technology may resolve the spectrum scarcity. A CR is a self-configuring entity in a wireless networking that senses its environment, tracks changes, and frequently exchanges information with their networks. However, CRN facing challenges and condition become worst while tracks changes i.e. reallocation of another under-utilized channels while primary network user arrives. In this paper, channels or resource reallocation technique based on DNA-inspired computing algorithm for CRN has been proposed.

Keywords: Ad hoc networks, channels reallocation, cognitive radio, DNA local sequence alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
877 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems

Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira

Abstract:

Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.

Keywords: Particle swarm optimization, migration, variable neighborhood search, multiobjective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
876 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616