
 

 

  
Abstract—This paper deals with the application for content-

based image retrieval to extract color feature from natural images 
stored in the image database by segmenting the image through 
clustering. We employ a class of nonparametric techniques in which 
the data points are regarded as samples from an unknown probability 
density. Explicit computation of the density is avoided by using the 
mean shift procedure, a robust clustering technique, which does not 
require prior knowledge of the number of clusters, and does not 
constrain the shape of the clusters. A non-parametric technique for 
the recovery of significant image features is presented and 
segmentation module is developed using the mean shift algorithm to 
segment each image. In these algorithms, the only user set parameter 
is the resolution of the analysis and either gray level or color images 
are accepted as inputs. Extensive experimental results illustrate 
excellent performance.  

Keywords—Segmentation, Clustering, Image Retrieval, Features. 

I. INTRODUCTION 
BIR for genera Mean Shift   procedure l-purpose image 
databases is a highly challenging problem. An image in a 

database, or a portion of an image, is represented by a set of 
regions, corresponding to objects, which are characterized by 
color, texture, shape, and location. Region-based image 
retrieval (RBIR) systems attempt to overcome the drawback of 
global features by representing images at object-level, which 
is intended to be close to the perception of human visual 
system [3], [10], [12]. We have created a database of 5000 
natural images. The procedure discussed in the section 3 is 
applied on each image and is segmented to get the region of 
interest.  

Low-level computer vision tasks are misleadingly difficult. 
Incorrect results can be easily obtained since the employed 
techniques often rely upon the user correctly guessing the 
values for the tuning parameters. To improve performance, the 
execution of low-level tasks should be task driven, i.e., 
supported by independent high-level information. This 
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approach, however, requires that, first; the low-level stage 
provides a reliable extraction process be controlled only by 
very few tuning parameters corresponding to intuitive 
measures in the input domain [7]. 

Feature space-based analysis of images is a paradigm, 
which can achieve the above-stated goals. A feature space is a 
mapping of the input obtained through the processing of the 
data in small subsets at a time. For each subset, a parametric 
representation of the feature of interest is obtained and the 
result is mapped into a point in the multidimensional space of 
the parameter. After the entire input is processed, significant 
features correspond to denser regions in the feature space, i.e., 
to clusters, and the goal of the analysis is the delineation of 
these clusters [13].  

Analysis of the feature space is application independent. 
While there are a plethora of published clustering techniques, 
most of them are not adequate to analyze the feature spaces 
derived from the real data. Methods that rely upon a priori 
knowledge of the number of clusters present, as well as 
methods which implicitly assume the same shape for all the 
clusters in the space, are not able to handle the complexity of a 
real feature space. For a survey of such methods, see [20].  

Most often different variants of k-means clustering are 
employed, in which the feature space is represented as a 
mixture of normal distributions. The user usually sets the 
number of mixture components. The popularity of the k-
means algorithm is due to its low computational complexity of 

),(nkNdO  where n  is the number of points, d  the 

dimension of the space, and N the number of iterations, 
which is always small relative to n . However, since it 
imposes a rigid delineation over the number of clusters 
present, the k-means clustering can return erroneous results 
when the embedded assumptions are not satisfied. Moreover, 
the k-means algorithm is not robust, points, which do not 
belong to any of the K clusters, can move the estimated means 
away from the densest regions [5], [6]. 

Arbitrarily structured feature spaces can be analyzed only 
by nonparametric methods since these methods do not have 
embedded assumptions. Numerous nonparametric clustering 
methods were described in the literature and they can be 
classified into two large classes: hierarchical and density 
estimation. Hierarchical clustering techniques either aggregate 
or divide the data based on some proximity measure. The 
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hierarchical methods tend to be computationally expensive 
and the definition of a meaningful stopping criterion for the 
fusion (or division) of the data is not straightforward [2]. 

The rationale behind the density estimation-based non-
parametric clustering approach is that the feature space can be 
regarded as the empirical probability density function (p.d.f) 
of the represented parameter. Dense regions in the feature 
space thus correspond to local maxima of the p.d.f., that is, to 
the modes of the unknown density. Once the location of a 
mode determined, the cluster associated with it is delineated 
based on the local structure of the feature space [7].  

The Mean shift procedure is a robust clustering technique, 
is also an iterative technique, but instead of the means, it 
estimates the modes of the multivariate distribution underlying 
the feature space. The number of clusters is obtained 
automatically by finding the centers of the densest regions in 
the space (the modes) [7].   

Our approach to mode detection and clustering is based on 
the mean shift procedure. Mean shift is a simple, 
nonparametric clustering technique for estimation of the 
density gradient was proposed in 1975 by Fukunaga and 
Hostetler. The idea was generalized by [1]. The advantages of 
employing a mean shift type procedure in density estimation 
were only recently rediscovered. As will be proven in the 
sequel, a computational module based on the mean shift 
procedure is an extremely versatile tool for feature space 
analysis and can provide reliable solutions for many vision 
tasks.  

The region representation used by the mean shift 
segmentation is similar to the blob representation employed in 
[17]. However, while the blob has a parametric description, 
the partition generated by the mean shift is characterized by a 
nonparametric model. An image region is defined by all the 
pixels associated with the same mode in the joint domain. In 
[19], a nonparametric clustering method is described in which, 
after kernel density estimation with a small bandwidth, the 
clusters are delineated through concatenation of the detected 
mode’s neighborhoods. The merging process is based on two 
intuitive measures capturing the variations in the local density. 
Being a hierarchical clustering technique, the method is 
computationally expensive; it takes several minutes in 
MATLAB to analyze a 2,000-pixel subsample of the feature 
space. The method is not recommended to be used in the joint 
domain since the measures employed in the merging process 
become ineffective. Comparing the results for arbitrarily 
shaped synthetic data [19] with the mean shift method here 
shows that the use of a hierarchical approach can be 
successfully avoided in the nonparametric clustering 
paradigm. The joint domain segmentation of the color 180 X 
119 image presented in Fig. 3 is also satisfactory. Compare 
this result with the segmentation presented in [21] obtained by 
recursive thresholding. In these examples, we have noticed 
that regions in which a small gradient of illumination exists 
(like the water in Fig. 3) were delineated as a single region. 
Thus, the joint domain mean shift-based segmentation 
succeeds in overcoming the inherent limitations of methods 
based only on gray-level or color clustering which typically 
oversegment small gradient regions. Result of mean shift is 
also compared with that of multiscale approach in [18].  

Finally, we have compared the contours of the color image 
with those from [16], obtained through a complex global 
optimization for performance. In section 2, mean shift 
procedure is defined and its properties are analyzed. In section 
3, the procedure used as a computational module and 
implementation issues are discussed. Section 4, discusses the 
results of segmentation. 

 

II. MEAN SHIFT PROCEDURE 
The modes of a random variable y are the local maxima of 

its probability density function )(yf . However, only the 

empirical distribution, the data points niyi ,........,1, =  are 
available. To accurately determine the locations of the modes, 
first a continuous estimate of the underlying density 

)(ˆ yf has to be defined. Later that this step can be eliminated 
by directly estimating the gradient of the density. To estimate 
the probability density in y  a small neighborhood is defined 
around y . The neighborhood usually has a simple shape: 

cube, sphere or ellipsoid. Let its volume be yV , and ym be 

the number of data points inside. Then the density estimate is 

y

y

nV
m

yf =)(ˆ  which can be employed in two different ways.  

First, in the nearest neighbors approach, the neighborhoods 
(the volumes of yV ) are scaled to keep the number of points 

ym  constant. A mode corresponds to a location in which the 
neighborhood has the smallest volume [14].  

Second, in the kernel density approach, the neighborhoods 
have the same volume yV and the number of points ym inside 
is counted. A mode corresponds to location in which the 
neighborhood contains the largest number of points [14].  

For goal of finding the local maxima of )(ˆ yf , the kernel 
density methods are more suitable. Kernel density estimation 
is a widely used technique in statistics and pattern recognition, 
where it is also called the Parzen window method [7].  

Kernel    density estimation is the most   popular density 
estimation method. Given n data points  xi , i=1,….n in the d-
dimensional space Rd , the multivariate kernel density 
estimator with kernel k(x) and a symmetric positive definite d 
X d bandwidth matrix H, computed in the point x is given by  

)(1)(ˆ
1

i

n

i
H xxk

n
xf −= ∑

=

                      (1)                   

Where  )()( 2
1

2
1

xHkHxkH
−−=                                      (2) 

      
The d-variate kernel )(xk is a bounded function with 
compact support satisfying  
 

        0)(1)( lim ==∫ ∞→ xkxdxxk
d

R
x

d

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007 

2489International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

43
2.

pd
f



 

 

Icdxxkxxdxxxk k
R

T

R dd

== ∫∫ )(0)(            (3) 

Where kc  is a constant. The multivariate kernel can be 
generated from a symmetric univariate kernel k1(x) in two 
different ways 

 ( )xkaxkxkxk dk
s

i

d

i

p
1,

1
1 )()()( == ∏

=

            (4)    

Where )(xk p is obtained from the product of the univariate 

kernels and )(xk s from rotating dRinxk )(1 , i.e., )(xk s is 

radially symmetric. The constant ( )dxxka
dR

dk ∫=−
1

1
,  assures 

that )(xk s  integrates to one. Either type of multivariate 
kernel obeys (3), but for our purposes, the radially symmetric 
kernels are often more suitable. We are interested only in a 
special class of radially symmetric kernels satisfying  

( )2
,)( xkcxk dk=                            (5)     

in which case it suffices to define the function k(x) called the 
profile of the kernel, only for .0≥x The normalization 
constant dkc , , which makes k(x) integrate to one, is assumed 

strictly positive. Using a fully parameterized H increases the 
complexity of the estimation and, in practice, the bandwidth 
matrix H is chosen either as diagonal H=diag [h1

2,…., hd
2], or 

proportional to the identity matrix H=h2I. The clear advantage 
of the latter case is that only one bandwidth parameter h>0 
must be provided. However, as can be seen from (2), then the 
validity of an Euclidian metric for the feature space should be 
confirmed first. 

Employing only one bandwidth parameter, the kernel 
density estimator (1) becomes the well-known expression 

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i
d h

xx
k

nh
xf

1

1)(ˆ           (6) 

The quality of the kernel density estimator is measured by the 
mean of the square error between the density and its estimate, 
integrated over the domain of definition. In practice, however, 
only an asymptotic approximation of this measure (denoted as 
AMISE) can be computed. Under the asymptotics, the number 
of data points ∞→n , while the bandwidth 0→h  at a rate 
slower than 1−n .For the both types of multivariate kernels, 
the AMISE measure is minimized by the Epanechnikov kernel 
having the profile 

{ 101
,10)( ≤≤−

>= xx
xE xk                 (7) 

which yields the radially symmetric kernel. 

{ 1)1()2(
2
1

,0

21

)(
≤−+−

=
xxdc

otherwiseE
dxk  (8) 

Where cd  is the volume of the unit d- dimensional sphere. 
Note that the Epanechnikov profile is not differentiable at the 
boundary. The profile  

0)
2
1exp()( ≥−= xxxkN            (9)        

Yields the multivariate normal kernel. 

)
2
1exp()2()( 22 xXk

d

N −= −π          (10) 

for both types of composition (4). The normal kernel is often 
symmetrically truncated to have a kernel with finite support. 
While these two kernels will suffice for most applications we 
are interested in, all the results presented below are valid for 
arbitrary kernel within the conditions to be stated. Employing 
the profile notation, the density estimator (6) can be rewritten 
as  

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

n

i

i
d
dk

kh h
xxk

nh
c

xf
1

2
,

, )(ˆ                      (11) 

The first step in the analysis of the feature space with the 
underlying density  )(xf  is to find the modes of this density. 
The modes are located along the zeros of the gradient 

0)( =∇ xf  and the mean shift procedure is an elegant way 
to locate these zeros without estimating the density. 
 

A.  Density Gradient Estimation 
The density gradient estimator is obtained as the gradient of 

the density estimator by exploiting the linearity of (11) 

⎟
⎠
⎞⎜

⎝
⎛−=∇≡∇ −

=
+

∧

∑
2'

1
2

,
,, )(

2
)(ˆ)( h

xx
n

i
id

dk
khkh

ikxx
nh

c
xfxf         (12) 

We define the function 
),()( ' xkxg −=            (13) 

Assuming that the derivative of the kernel profile k exists for 
all [ )∞∈ ,0x , except for a finite set of points. Now, using 

)(xg  for profile, the kernel )(xG  is defined as  

( ) ,)( 2
, xgcxG dg=       (14) 

Where dgc ,  is the corresponding normalization constant. The 

kernel )(xk  was called the shadow of )(xG  in a slightly 
different context. Note that Epanechnikov kernel is the 
shadow of the uniform kernel, i.e., the d-dimensional unit 
sphere, while the normal kernel and its shadow have the same 
expression. Introducing  )(xg into (12) yields, 

⎟
⎠
⎞⎜

⎝
⎛−=∇ −

=
+

∧

∑
2

1
2

,
, )(

2
)( h

xx
n

i
id

dk
kh

igxx
nh

c
xf  

)15(
2

)( 2

1

2

12

1
2

,
,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

∑

∑
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛=∇

⎟
⎠

⎞
⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛
−

=
+

∧

−

=

−

=∑ xg
nh

c
xf

h
ixxn

i

h
ixxn

i i
i

g

gx

h
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n

i
d

dk
kh

 

Where ⎟
⎠
⎞⎜

⎝
⎛ −

=∑
2

1 h
xxn

i
ig  is assumed to be a positive number. 

This condition is easy to satisfy for all the profiles met in 
practice. Both terms of the product in (15) have special 
significance. From (11), the first term is proportional to the 
density estimate at x computed with the kernel G. 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

n

i

i
d
dg

Gh h
xx

g
nh
c

xf
1

2
,

, )(ˆ       (16) 
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The second term is the mean shift. 

,)( 2

1

2

1

, xxm
h

ixxn

i

h
ixxn

i i

g

gx

Gh −
∑

∑
=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
=

−
=

                 (17) 

i.e., the difference between the weighted mean, using the 
kernel G for weights, and x, the center of the kernel (window). 
From (16) and (17),(15) becomes 

)()(ˆ)( ,
2

,,
,

2
, xmxfxf Ghch

c
Ghkh

dg

dk=∇
∧

    (18) 

yielding 

)(ˆ
)(2

2
1

,
,

,)(
xf

xf
Gh

Gh

khchxm
∧
∇=           (19) 

The expression (19) shows that, at location x, the mean shift 
vector computed with kernel G is proportional to the 
normalized density gradient estimate obtained with the kernel 
K. The normalization is by the density estimate in x is 
computed with the kernel G. The mean shift vector thus 
always points toward the direction of maximum increase in 
the density. This is a more general formulation of the property 
first remarked by Fukunaga and Hostetler.  

The relation captured in (19) is intuitive; the local mean is 
shifted towards the region in which the majority of the points 
reside. Since the mean shift vector is aligned with the local 
gradient estimate, it can define a path leading to a stationary 
point of the estimated density. The modes of the density are 
such stationary points. The mean shift procedure, obtained by 
successive 

• Computation of the mean shift vector ),(, xm Gh   

• Translation of the kernel (window) )(xG  by 

),(, xm Gh  

is guaranteed to converge at a nearby point where the 
estimate(11) as zero gradient. The presence of normalization 
by the density estimate is a desirable feature. The regions of 
the low-density values are of no interest for the feature space 
analysis and, in such regions, the mean shift steps are large. 
Similarly, near local maxima the steps are small and the 
analysis more refined. The mean shift procedure thus is an 
adaptive gradient ascent method [4], [8]. 
 

B.  Sufficient Condition for Convergence 
Denote by ..2,1}{ =jjy  the sequence of successive locations 

of the kernel G, where, from (17),  
 

,.....2,1

1

2

1

2

1 =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

⎟
⎟
⎠

⎞
⎜
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⎝
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=

∑

∑

=

=

+ j

h
xx

g

h
xx

gx

y
n

i
i

n

i
i

i

j
   (20) 

is the weighted mean at jy  computed with kernel G and 1y  

is the center of the initial position of the kernel. The 

corresponding sequence of density estimates computed with 

kernel k , 
,.......,2,1

, )(
=

Λ

⎭
⎬
⎫

⎩
⎨
⎧

j
kh jf , is given by 

,.....2,1)()( ,, ==
ΛΛ

jyfjf jkhkh            (21)                 

A kernel k  that obeys some mild conditions suffices for the 
convergence of the sequences { }

,..2,1=jjy  and 

,....,2,1
, )(

=

Λ

⎭
⎬
⎫

⎩
⎨
⎧

j
kh jf . 

 
C.  Mean Shift-Based Mode Detection 

Let us denote by cy  and )(,, ckhkh
c yff

ΛΛ

=  the 

convergence points of the sequences { }
,..2,1=jjy  and 

,.......,2,1
,

^
)(

=⎭
⎬
⎫

⎩
⎨
⎧

j
kh jf , respectively. The implications are the 

following. First, the magnitude of the mean shift vector 
converges to zero. Indeed, from (17) and (20) the jth   mean 
shift vector is  

jjjGh yyym −= +1, )(                          (22) 

and, at the limit, 0)(, =−= cccGh yyym . In other words, 

the gradient of the density estimate (11) cy is zero   

,0)(, =∇
Λ

ckh yf                     (23) 

due to (19). Hence, cy  is a stationary point of khf ,

Λ

. Second, 

since 
,.......,2,1

, )(
=

Λ

⎭
⎬
⎫

⎩
⎨
⎧

j
kh jf is monotonically increasing, the 

mean shift iterations satisfy the conditions required by the 
capture theorem, which states that the trajectories of such 
gradient methods are attracted by local maxima if they are 
unique (within a small neighborhood) stationary points. That 

is, once jy  gets sufficiently close to a mode of khf ,

Λ

 , it 

converges to it. The set of all locations that converge to the 
same mode defines the basin of attraction of that mode. 
 The theoretical observations from above suggest a practical 
algorithm for mode detection: 

• Run the mean shift procedure to find the stationary   

points of khf ,

Λ

, 

• Prune these points by retaining only the local 
maxima.  

 
The local maxima points are defined, according to the 

Capture theorem, as unique stationary points within some 
small open sphere. Perturbing each stationary point by a 
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random vector of small norm and letting the mean shift 
procedure converge again can test this property. Should the 
point of convergence be unchanged (up to a tolerance), the 
point is a local maximum.  

D.  Smooth Trajectory Property 
The mean shift procedure employing a normal kernel has an 

interesting property. Its path toward the mode follows a 
smooth trajectory, the angle between consecutive mean shift 
vectors being always less than 90 degrees. Using the normal 
kernel (10), the j  th   mean shift vector is given by  
 

)24(
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exp

)(
2

1

2

1

1, j
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+

 

III. COLOR IMAGE SEGMENTATION 
The versatility of the feature space analysis enables the 

design of algorithms in which the user controls performance 
through a single parameter, the resolution of the analysis (i.e., 
bandwidth of the kernel). Both gray level and color images are 
processed with the same algorithm, in the former case, the 
feature space containing two degenerate dimensions that have 
no effect on the mean shift procedure. We have chosen the 
L*u*v* space, whose coordinates are related to the RGB values 
by nonlinear transformations [15]. The daylight standard D65 
was used as reference illuminant. 
 

A.  Mean Shift Filtering 
Let ,,....,1, nizandx ii = be the d-dimensional input 

and filtered image pixels in the joint spatial-range domain. For 
each pixel, 
1. Initialize .1 1, ii xyandj ==   

2. Compute  1, +jiy  according to (20) until convergence, 

.,ciyy =  

3. Assign .),( ,
r

ci
s
ii yxz =  

 
The superscripts rands denote the spatial and range 

components of a vector, respectively. The assignment 
specifies that the filtered data at the spatial location s

ix  will 

have the range component of the point of convergence .,
r

ciy  

The kernel in the mean shift procedure   moves in the 
direction of the maximum increase in the joint density 
gradient, while the bilateral filtering uses the fixed, static 
window. In the image smoothed by mean shift filtering, 
information beyond the individual windows is also taken into 
account.     

B.  Image Segmentation with Mean Shift 
Large classes of image segmentation algorithms are based 

on feature space analysis. In this paradigm the pixels are 
mapped into a color space and clustered, with each cluster 
delineating a homogeneous region in the image i.e., a 
piecewise constant model is enforced over the image. 

When the mean shift procedure is applied to every point in 
the feature space the points of convergence aggregate in 
groups, which can be merged. These are the detected modes, 
and the associated data points define their basin of attraction. 
The clusters are delineated by the boundaries of the basins, 
and thus can have arbitrary shapes. The number of significant 
modes detected automatically determines the number of 
significant clusters present in the feature space.  

The color image segmentation algorithm proposed in [8], a   
five-dimensional feature space was used. The L*u*v* color 
space was employed since its metric is a satisfactory 
approximation to Euclidean, thus allowing the use of spherical 
windows. The remaining two dimensions were the lattice 
coordinates. A cluster in this 5D feature space thus contains 
pixels that are not only similar in color but also contiguous in 
the image. 

Recursive application of the mean shift property yields a 
simple mode detection procedure. The modes are the local 
maxima of the density, i.e. 0)( =∇ xf . They can be found 
by moving at each iteration window by the mean shift vector, 
until the magnitude of the shifts becomes less than a threshold. 
The procedure is guaranteed to converge. 

The quality of segmentation is controlled by the spatial sh , 

and the color rh , resolution parameters defining the radii of 
the (3D/2D) windows in the respective domains. The 
segmentation algorithm has two major steps. First, the image 
is filtered using mean shift in 5D, replacing the value of each 
pixel with the 3D (color) component of the 5D mode it is 
associated to. Note that the filtering is discontinuity 
preserving. In the second step, the basins of attraction of the 
modes, located within rh / 2   in the color space are 
recursively fused until convergence. The resulting large basins 
of attraction are the delineated regions, and the value of all the 
pixels within is set to their average. It is important to 
emphasize that the segmenter processes gray level and color 
images in the same way. The only difference is that in the 
former case the feature space has three dimensions, the gray 
value and the lattice coordinates. To optimize the 
performance, in the filtering step, a speed-up of about four to 
five times relative to the actual time is obtained by not 
applying the mean shift procedure to the pixels which are on 
the mean shift trajectory of another (already processed) pixel. 
These pixels were directly associated with the mode to which 
the path converged. The approximation does not yield a 
visible change in the filtered image.  

In the fusion step, extensive use was made of region 
adjacency graphs and graph contraction with a union- find 
algorithm [11]. The initial region adjacency graph was built 
from the filtered image, the modes being the vertices of the 
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graph and the edges were defined based on four connectivity 
on the lattice. The fusion was performed as a transitive closure 
operation on the graph, under the condition that the color 
difference between two adjacent nodes should not exceed 

rh /2.  At convergence, the color of the regions was 
recomputed and the transitive closure was again performed. 
After at most three iterations the final labeling of the image 
(segmentation) was obtained. Small regions were then 
allocated to the nearest neighbor in the color space. Note that 
employing a look-up table, which captures the relation 
between the smallest significant color difference and the 
minimum region size. The implementation of the color image 
segmenter was also tested for equivariance under 90o rotations 
on the lattice. That is, when the input image is rotated the 
segmented image rotates accordingly. This property assures 
that the output of the processing does not depend on the order 
in which the pixels in the image are processed. 

IV. RESULTS 
 

       
 

(a)                           (b)                           (c) 
 
 

       
 

(d)                           (e)                           (f) 

Fig. 1 Mean Shift segmentation.  (a) Input color Image of  99 X 132  
(b) Filtered Image.  (c) Segmentation at higher resolution i.e. 

sh =7, rh =6.5 , M =100.  (d) Segmentation at lower resolution with 

sh =7, rh =7.5 M =100. (e)(f) Segmentation with sh =9, rh =6.5, 

M =200  and region boundaries 
 
 

The performance of the mean shift segmentation using 
lattice is accessed with seven images of different natures. The 
99 X 132 color scenery image in Fig. 1a is segmented by 
setting different values to the input parameters sh , rh  and 

M . When the image is segmented at a lower resolution i.e. 

sh =7, rh =7.5 M =100 only a very few features are 
recovered i.e. obtained 21 regions as in Fig. 1d. On the other 
hand, when the resolution is slightly increased i.e. 

sh =7, rh =6.5 M =100 a significant clutter appears i.e. 

obtained 24 regions as in   Fig. 1c.  M , Minimum Number of 
pixels in the region also changes the recovery of features as in 
Fig. 1e and 1f.  Here sh =9, rh =6.5 M =200 and obtained 

regions are 16. Tested also for sh =7, rh =6.5, M =220 
obtained regions are 13. Time taken for segmentation is 0.59 
secs.  
 
 

     
   
              (a)                             (b)                           (c)                                   
 

   
 

(d) (e) 

Fig. 2 Mean Shift segmentation.  (a) Input color Image of 150 X 112 
(b) Segmentation at higher resolution i.e. sh =7, rh =6.5, M =200.  

(c) Segmentation at lower resolution with sh =7, rh =7.5 M =250. 

(d) (e) Segmentation at lower resolution  with sh =8, rh =7.5 

M =350  and Region boundaries 
 
 

The 150 X 112 color image in Fig. 2a is segmented by 
mean shift. When the image is segmented at a lower resolution 
i.e. sh =7, rh =7.5 M =250 only a very few features are 
recovered i.e. obtained 21 regions as in Fig. 2c. Two regions 
of interest (region number 11 and 16) are marked and their 
mode values, number of pixels in the region are accessed. 
Time complexity of segmentation is 0.73 seconds. On the 
other hand, when the resolution is slightly increased i.e. 

sh =7, rh =6.5 M =200 a significant clutter appears i.e. 
obtained 30 regions as in   Fig. 2b.  Region number 18 and 23 
are marked.  Time complexity of segmentation is 0.71 
seconds. Minimum Number of pixels in the region also 
changes the recovery of features as in Fig. 2d and 2e. Here 

sh =8, rh =7.5 M =350 and regions obtained are 16. The time 
taken to segment this image is 0.90 seconds. 
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(a)                             (b)                            (c) 

 

   
 

(d) (e) 
 

Fig. 3 Mean Shift segmentation.  (a) Input color Image of 180 X 119 
(b) Segmentation at higher resolution i.e. sh =7, rh =6.5, M =20.  

(c) (d) Segmentation at  lower resolution with  

sh =7, rh =7.5, M =200. (e) Segmentation with sh =8, rh =7.5, 

M = 200 
 
 

Fig. 3 is a 180 X 119 natural scenery image 3a is segmented 
with sh =7, rh =6.5 M =20 and obtained 23 regions as in 3b. 
Time taken for segmentation is 0.98 seconds. Regions of 
interest are marked and their corresponding color features are 
extracted. 3c and 3d are the results with sh =7, rh =7.5, 

M =200 with time complexity of 1.0 second and obtained 10 
regions. Tested also for sh =8, rh =7.5, M =200 and obtained 
11 regions. Time taken for segmentation is 1.0 seconds as in 
Fig. 3e. 
 
 

        
 

(a)                           (b)                          (c) 
 

       
 

(d)                           (e)                          (f) 

Fig. 4 Mean Shift segmentation.  (a) Input color Image of 140 X 100 
(b) Filtered Image. (c) Segmentation at higher resolution i.e. 

sh =7, rh =6.5, M =20.  (d) Segmentation at lower resolution with 

sh =7, rh =6.5, M =300. (e) (f) Segmentation  with sh =7, rh =8.5, 

M =250 
 
 

Fig. 4 is a 140 X 100 color image. This is tested with 

sh =7, rh =6.5 M =20 and obtained 75 regions as in 4c. We 
have accessed number of pixels and color features of 13th and 
41st region with time complexity of 0.65 seconds. In fig. 4d 
the value of M is increased to 300 and obtained 10 regions 
with 0.65 seconds. Fig. 4e and 4f are segmented with 

sh =7, rh =8.5, M =250 and obtained 9 regions. Time taken is 
0.68 seconds.  
 

     
                     (a)                         (b)                       (c)  
 
Fig. 5 Mean Shift segmentation.  (a) Input gray level Image of 400 X 

390 (b) Segmentation at lower resolution i.e. sh =9, rh =7.5, 

M =600.  (c) Region boundaries 
 

Fig. 5 is a 400 X 390 gray level image. This is tested with 

sh =9, rh =7.5 M =600 and obtained 6 regions as in 5b and 
5c shows the corresponding region boundaries. Time taken is 
9.18 seconds. Tested also for sh =7, rh =6.5 M =20 and 
number regions obtained are 53 with 6.7 secs. With high 
speed time taken is 0.64 secs for same parameters.  By 
changing parameters values to sh =7, rh =7.5 M =200 with 
high  speed obtained regions are 22 with 0.57secs.  
 

      
(a)                       (b) 

 
Fig. 6 Mean Shift segmentation.  (a) Input color nature image of 89 X 

118. (b) Segmentation at lower resolution i.e. sh =7, rh =9.5, 

M =100. Obtained 11 regions with 0.57 secs 
 

      
(a) (b) 

 
Fig. 7 Mean Shift segmentation.  (a) Input color nature image of 89 X 

118 (b) Segmentation at lower resolution i.e. sh =7, rh =9.5, 

M =100 
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Fig. 6 and Fig. 7 also show the excellent performance of the 
mean shift algorithm. The Fig. 7 is segmented with 

sh =7, rh =9.5, M =100. Time taken is 1.96 secs. With high 
speed time taken is 0.49 secs. 

We can observe from the above results that the values of 
the parameters significantly change the performance of 
segmentation. So the parameters values must be chosen 
carefully to retain the quality of segmentation.  We have 
accessed number of pixels in interested cluster (region) to 
have percentage, color feature (mode value) associated with 
each cluster, how many such clusters forms a required 
region/object ect., to store them in the database for image 
retrieval. 

V. CONCLUSION 
The simplicity of the basic computational module, the mean 

shift algorithm, enables the feature space analysis to be 
accomplished very fast. The segmentation is not very sensitive 
to choice of sh  and rh . The range parameter rh and the 

smallest significant feature size M control the number of 
regions in the segmented image. An important advantage of 
mean shift-based segmentation is its modularity that makes the 
control of segmentation output very simple.  The more an 
image deviates from the assumed piecewise constant model, 
larger values have to be used for rh  and M to discard the 
effect of small local variations in the feature space. The 
procedure is implemented to get the required information for 
content-based image retrieval. The results of the segmentation 
are provided and discussed for different images in the 
previous section. Relevant feature like color (mode value), its 
percentage, pixels belongs to a cluster (Region / boundary 
information) are extracted for the interested regions after 
segmentation and intern stored in the database. 

Kernel density estimation, in particular, and nonparametric 
techniques, in general, does not scale well with the dimension 
of the space. This is mostly due to the empty space 
phenomenon by which most of the mass in a high-dimensional 
space is concentrated in a small region of the space. Thus, 
whenever the feature space has more than (say) six 
dimensions, the analysis should be approached carefully.  

To conclude, the mean shift procedure is a valuable 
computational technique whose versatility can make it an 
important component in computer vision applications. 
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