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Exploring the combinatorics of motif alignments for

accurately computing E-values from p-values
T. Kjosmoen, T. Ryen, and T. Eftestøl

Abstract—In biological and biomedical research motif finding
tools are important in locating regulatory elements in DNA sequences.
There are many such motif finding tools available, which often yield
position weight matrices and significance indicators. These indicators,
p-values and E-values, describe the likelihood that a motif alignment
is generated by the background process, and the expected number of
occurrences of the motif in the data set, respectively. The various tools
often estimate these indicators differently, making them not directly
comparable. One approach for comparing motifs from different tools,
is computing the E-value as the product of the p-value and the
number of possible alignments in the data set. In this paper we explore
the combinatorics of the motif alignment models OOPS, ZOOPS, and
ANR, and propose a generic algorithm for computing the number of
possible combinations accurately. We also show that using the wrong
alignment model can give E-values that significantly diverge from
their true values.

Keywords—Motif alignment, combinatorics, p-value, E-value,
OOPS, ZOOPS, ANR.

I. INTRODUCTION

There are many different algorithms available for finding

motifs in gene sets [1], [2]. Often, the comparison of the

different algorithms entails running each algorithm on an

artificially constructed data set where the motifs to be found

are known in advance. In these cases, comparing the methods

can be done by measuring how well the detected motifs match

the inserted motifs.

If the motifs present in the data set are not known in

advance, alternative methods have to be used in order to

compare the algorithms. The first obstacle in this endeavor

is the fact that these tools, such as MEME [3], Weeder [4],

NestedMICA [2], etc., all produce different outputs. When

evaluating a motif, there are mainly two properties that are

the most important: The p-value and the E-value. The p-value

signifies the probability that the given motif could have been

created by the random background model, while the E-value

is the number of times one should expect the given motif

to appear in the data set, if the data set has been randomly

generated.

Most, if not all, motif finding algorithms represent the motif

as some sort of position weight matrix (PWM) [5], be it a

position count matrix (PCM) [3], position frequency matrix

(PFM) [2], or a PWM denoting the information content [3].

In addition to some form of PCM or PFM, the motif finding

tools can include one or more p-values and/or E-values. If the

p-values and E-values are included in the output, they are not
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always directly comparable. The reason for this is that there

are many different ways of estimating both p-values and E-

values [6], [7], and these methods do not all compute the exact

same estimate values.

II. MOTIF ALIGNMENTS

The PWM represents the resulting motif in terms of a matrix

in which one dimension is the letter Σi in the given alphabet

Σ = {A, C,G, T}, and the other dimension is the position j
in the the motif. Each element in the matrix represents the

contribution the letter Σi has on the motif in the position j.

Consider a set of Nm sub-sequences of length Lm found in the

given gene set that are sufficiently similar to each other that

one can assume they are all representations of a single motif.

These sub-sequences, or rather their positions and extents in

the gene set, will be referred to as match sites or simply just

sites throughout this article. As an example, consider the 7

sub-sequences shown in Table I.

TABLE I
SUB-SEQUENCES MAKING UP THE EXAMPLE MOTIF.

Site Motif position j

k 1 2 3 4 5 6

1 G G C C A A

2 G G T C A A

3 G G A C A A

4 G A C C A A

5 G A T C A A

6 G G T G A A

7 G A A C A A

When performing the motif alignment of the example sub-

sequences in Table I, the position count matrix is a count of

all occurrences of the letter Σi at position j in the alignment.

The PCM for the example alignment is shown in Table II.

TABLE II
POSITION COUNT MATRIX FOR MOTIF DESCRIBED BY TABLE I.

Symbol Motif position j

Σi 1 2 3 4 5 6

A 0 3 2 0 7 7
C 0 0 2 6 0 0
G 7 4 0 1 0 0
T 0 0 3 0 0 0

A position frequency matrix contains the frequencies pi,j in

which each letter occurs at position j in the motif alignment.
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The frequencies can be computed by using pi,j = ni,j/Nm.

Finally, the elements in the position weight matrix (or position-

specific weight matrix) represent some form of measure, or

score, of the weighted distance between the motif alignment

and the background distribution. There are several measures of

the position-specific scores for each symbol that are used, such

as χ2, log-likelihood, Kullback-Leibler divergence, euclidian

distance, etc.[5]

In order to make an even comparison of motifs found by

different algorithms, either the PCM or PFM can be used to

compute the p-values, for instance by employing one of the

previously mentioned scores such as the Kullback-Leibler.

While knowing the probability of a motif having occurred

by chance is an important measure, it does not allow for

a direct comparisons between motifs of different lengths. A

more useful measure is thus the E-value; how many times

the motif is expected to occur in a randomly generated gene

set. If the p-value is available, the E-value can be computed

by multiplying the p-value by the total number of possible

alignments. The E-value can thus be defined by using (1).

e-value = p-value · Cp (1)

The number of possible alignments of a motif, Cp, depends

on several factors. The first factor is the number of sites

Nm in the motif, as well as the length Lm of the motif.

Another important factor is the mode of which the sites are

chosen, i.e. whether one site per sequence or multiple sites

per sequence is allowed. As an example, the motif finding

algorithm MEME has three basic modes of operation: One

occurrence per sequence (OOPS), zero or one occurrence per

sequence (ZOOPS), and any number of repetitions (ANR).

The next few sections will cover these three alignment modes

and how the number of possible alignments, Cp, for each one

can be computed.

A. One occurrence per sequence

The alignment mode of OOPS is quite straight forward:

There shall be only one match site per gene sequence, no more,

no less. While the number of combinations in this mode seems

obvious, it will serve as a lead-up to the more complicated

cases of ZOOPS and ANR.

Consider a gene sequence of length Ls empty of any match

sites. A simple way of representing this is as a series of dots;

Ls dots, to be specific. The gene sequence is illustrated in

Fig. 1. When computing the number of ways in which a single

Ls

Fig. 1. Available positions in a given gene sequence.

match site of length Lm can be placed in a gene sequence of

length Ls, the intuitive way may be to just count the number

of positions from the beginning of the gene sequence and up

until the end is reached. Calculating this number is as simple as

Ls−Lm +1. There is another way of looking at this problem,

which will also make it easier to understand the combinatorics

of the cases where there can be multiple match sites in a single

sequence.

To illustrate, consider a match site placed on a gene se-

quence as shown in Fig. 2. The site covers Lm nucleotides,

or letters Σi, leaving Ls − Lm nucleotides open. Because

Lm Ls − Lm

Fig. 2. A single motif site placed on the gene sequence.

the match site will always cover Lm consecutive nucleotides,

one can instead think of the match site as a single entity. In

other words, conceptually remap the Lm nucleotides into a

new single nucleotide, as shown in Fig. 3. Clearly, this is a

1 Ls − Lm

Fig. 3. Remapped nucleotide positions with a single motif site.

new construct; the length of the new conceptual gene sequence

has altered. There are now Ls − Lm + 1 nucleotides, which

actually is the same number was reached earlier. Thinking of

this in combinatorics terms, Cp can be computed as the the

number of combinations in which 1 site can be chosen out of

Ls − Lm + 1:

Cp,single = Ls − Lm + 1 =

(
Ls − Lm + 1

1

)
(2)

The purpose of including the binomial in the right-most part

of (2) is to illustrate the ties between OOPS and ZOOPS, and

will be revisited later in the article.

An OOPS alignment almost always involves multiple gene

sequences. An illustration of an OOPS alignment is shown in

Fig. 4. For each position of a match site in the first sequence,

1 Ls − Lm

Nm = Ns

Fig. 4. Gene sequence set with a remapped single motif site per sequence.

there are many combinations of which the rest of the sites can

be positioned in the remaining sequences. In fact, the total

number of combinations in the whole gene set is the product

of all the combinations for each individual sequence, as given

by:

Cp,OOPS = (Ls − Lm + 1)
Nm =

(
Ls − Lm + 1

1

)Nm

. (3)

Note that in the case of OOPS, the number of sequences Ns

is equal to the number of match sites Nm, but to be consistent

with ZOOPS and ANR, Nm has been chosen as the exponent

here.
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B. Zero or one occurrence per sequence

The case of ZOOPS is quite similar to the OOPS mode.

In fact, OOPS can be seen as a special case of ZOOPS. As

the name implies, there can now be either zero or one match

site per gene sequence. An example of a ZOOPS alignment is

shown in Fig. 5. Obviously, there cannot be more site matches

1 Ls − Lm

Nm
Ns

Fig. 5. Gene sequence set with one or zero remapped motif sites per
sequence.

than sequences, and an alignment must per definition always

contain at least two match sites in order to be an alignment,

so the following constraint applies:

2 ≤ Nm ≤ Ns. (4)

There is now another dimension to the problem of com-

puting the number of alignment combinations. Looking at the

example in Fig. 5 it is clear that the number of ways the Ns

sequences can be picked must be taken into account.When

aligning the sites, one must choose Nm out of the Ns available

sequences. For each of these sequence combinations, the

number of combinations of the match sites is still the same as

with OOPS shown in (3). The total number of combinations for

a ZOOPS alignment is thus the number of ways the sequences

can be picked multiplied with the number of combinations

for each of those picks, resulting in (5) as well as the

simplification (6).

Cp,ZOOPS =

(
Ns

Nm

)(
Ls − Lm + 1

1

)Nm

(5)

=

(
Ns

Nm

)
(Ls − Lm + 1)

Nm (6)

It is now evident that when using the OOPS alignment

mode, when Ns equals Nm, the first binomial part of (5)

becomes 1, and we are left with (3).

C. Any number of repetitions

While the cases of OOPS and ZOOPS were rather trivial,

the fact that the ANR alignment mode can have multiple

site matches in a single sequence makes it significantly more

complex. The alignment of two match sites in a single gene

sequence is illustrated in Fig. 6. Fig. 6 shows that the sites

Lm Lm Ls − NmLm

Nm

Fig. 6. Multiple motif sites placed on the gene sequence.

cover an area of Nm times Lm, leaving Ls − NmLm open

nucleotides. The observant reader may notice that if a site is

placed less than Lm nucleotides away from either of the ends,

several available positions for the remaining sites are lost.

Again the same trick of conceptually remapping the positions

can be used by assuming that each match site occupies only

a single nucleotide, as illustrated in Fig. 7. By essentially

counting the open positions, the problem of the lost border

alignments is successfully avoided.

1 1 Ls − NmLm

Nm

Fig. 7. Remapped nucleotide positions with multiple motif sites.

It is clear from Fig. 7 that the problem has again reduced to

a simple matter of computing a binomial coefficient. In other

words, choosing Nm sites out of a total of Ls−NmLm +Nm

positions, as shown in (7).

Cp,many =

(
Ls − NmLm + Nm

Nm

)
(7)

Now that it has been shown how to count the number of

ways in which Nm sites can be chosen from a single gene

sequence, the issue of choosing the sequences arises. Consider

the case where the sites are chosen from multiple, or all, of

the sequences in the data set. If one selects n1 sites from each

of a1 sequences, n2 from a2 other sequences, and so on, the

selections must satisfy the following constraint:

a1 · n1 + a2 · n2 + . . . + ak · nk = Nm (8)

What (8) really means, is that no more than the available Nm

sites can be picked.

There are also two other constraints that need to be satisfied.

The maximum number of gene sequences to select from

is already given by Ns, which means that the following

constraint must be satisfied:

a1 + a2 + · · · + ak = Ns (9)

There is also a limit to the number of sites that will fit inside

a single gene sequence, given by the following equation:

Nmax =

⌊
Ls

Lm

⌋
(10)

As there cannot be more than Nmax sites in a single

sequence, nor more than the Nm to be aligned, the last restraint

is then the maximum value for the nj’s given by (11).

nmax = minNmax, Nm (11)

Because counting 0 sites in a sequence does not contribute

to the total number of combinations, only the nj’s from 1 up

to nmax need to be evaluated. This means that the value of k
in (8) and (9) is thus equal to nmax.

Consider an example of an ANR alignment, illustrated in

Fig. 8. Please note that the sequences in Fig. 8, once each
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Nm

Ls − Lm

Ls − 2Lm

Ns

Fig. 8. Gene sequence set with an ANR alignment, with remapped match
sites.

site length has been remapped to occupy a single nucleotide

position, are actually of different lengths.

As the example in Fig. 8 illustrates, there is one sequence

with a single site and two sequences with two sites each. Using

the format of the constraint in (8), this can be expressed as

2 ·2+1 ·1+1 ·0 = 5, where a1 = 2, n1 = 2, a2 = 1, n2 = 1,

a3 = 1, and n3 = 0.

Assuming the partitioning of Nm as shown in (8), the total

number of ways that such a set of site partitions could be

combined can be calculated.

Again considering the ANR example shown in Fig. 8, the

number of ways the sequences are chosen must be calculated.

This can be done by first find the number of ways to choose

which sequences will have n1 sites, which sequences will

have n2 sites, and so on. The way to do this is to consider

these sequences as separate entities, and thus instead look at

the number of these entities, the aj’s. Using the constraint

in (8) one must first pick a1 of the gene sequences in the

data set, then a2 of the remaining Nrem sequences, and so

on until anmax
has been reached. The number of ways these

sequences can be picked from the gene set, Cp,seq, can be

found by computing the partial binomial coefficients
(
Nrem

aj

)
and multiplying them, as given by (14). Using the chosen

example, the sequences can be picked in
(
4

2

)(
2

1

)(
1

1

)
= 12

different ways. Again, strictly speaking, only the non-zero

aj’s need to be picked, as the sequences in which no sites

will be aligned do not contribute to the overall number of

combinations.

For each of the aj sequences in which nj sites are to be

aligned, the number of possible alignments, Cp,many , is given

by (7). Again, as with Cp,ZOOPS shown in (5), the binomial

coefficients
(
Nrem

aj

)
must be multiplied with the number of

combinations for each sequence. To clarify, for each j,(
Nrem

aj

)(
Ls − njLm + nj

nj

)aj

. (12)

has to be computed. Inserting (12) into (14) gives the total

number of combinations for a single partition set, Cp,part, as

shown in (15).

Now that the method for computing the number of ways in

which a single partition of sites can be chosen from the data set

has been established, the matter of integer partitioning must be

considered. Partitioning an integer into addends [8] [9], such

as the one shown in (8), is an old problem in number theory

and has been studied by great mathematicians such as Euler, S.

Ramanujan, J.H. Hardy, J. E. Littlewood, and H. Rademacher.

One way to think about the integer partitioning problem, is

to consider all the different ways in which 5 marbles can be

placed into different boxes. For instance, all the marbles can

be put into a single box, or 4 in one and 1 in another, etc. All

the different ways in which the number 5 can be partitioned

is illustrated in Fig. 9 (a) with the numerical equivalents listed

= 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1

= 3 + 2

= 4 + 1

= 5

(a) (b)

Fig. 9. Integer partitioning of the number 5.

alongside in Fig. 9 (b).

A more structured way of displaying the set of partitions

of Nm, is to use a matrix, Mpart, with the nj’s as one

dimension, and the partition number l as the second dimension.

The partition number runs from 1 up to pNm
, where pNm

is

the number of possible partitions of Nm given the constraints

of eqs. (9) and (11). Being a well studied problem [8] [9], the

computation of pNm
will not be covered in this paper. Each

element in Mpart is the aj’s from the definition given in (8),

and each row represents the a single partitioning.

TABLE III
PARTITIONING MATRIX Mpart FOR Nm AS GIVEN BY (8) AND

CONSTRAINED BY (9) AND (11).

Partition Sites per sequence, nj

number, l 1 2 . . . nmax

1 a1,1 a1,2 . . . a1,nmax

2 a2,1 a2,2 . . . a2,nmax

.

.

.
.
.
.

.

.

.
. . .

.

.

.
pNm

apNm
,1 apNm

,2 . . . apNm
,nmax

To help illustrate Table III better, consider the example from

Fig. 8 once again. Taking the digits, or addends, from each

partitioning shown in Fig. 9 and showing them in matrix form,

yields the Mpart matrix shown in Table IV.

There are many different algorithms available for computing

all the partitioning sets, for instance the fast ZS1 and ZS2

algorithms by Zoghbi and Stojmenovic [10].

Once the matrix Mpart of all valid partitions has been

constructed, computing the total number of combinations for

a given set of Ns, Ls, Nm, and Ls is a simple matter of adding

up the contributions from each partition set, as shown in (13).

Cp,ANR =

pNm∑
l=1

Cp,l,part (13)

The astute reader may have noticed that the formula pre-

sented in (13) is not the most effective way to compute this
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Cp,l,seq =

(
Ns

a1

)(
Ns − a1

a2

)(
Ns − a1 − a2

a3

)
· · ·

(
Ns −

∑nmax−1

i=1
ai

anmax

)
=

(
Ns

a1

)
·

nmax∏
j=1

(
Ns −

∑j−1

i=1
ai

aj

)
(14)

Cp,l,part =

(
Ns

a1

)(
Ls − n1Lm + n1

n1

)a1

·

nmax∏
j=1

[(
Ns −

∑j−1

i=1
ai

aj

)(
Ls − njLm + nj

nj

)aj

]
(15)

Algorithm 1 Algorithm for computing the precise number of possible ANR alignment combinations of a motif.

1: procedure ALIGNMENTCOMBINATIONSANR(Mpart,Ns,Ls,Nm,Lm)

2: Cp,ANR ← 0 ⊲ Initialize total number of combinations

3: nmax ← min
⌊

Ls

Lm

⌋
, Nm ⊲ Compute the maximum number of sites per sequence.

4: Nrem ← 1 × pNm
vector filled with Ns ⊲ Initialize the Nrem vector.

5: Cpart ← 1 × pNm
vector filled with 1 ⊲ Initialize the combinations vector.

6: for nj = 1, 2, ..., nmax do

7: Ctmp ← 1 × max Mpart vector filled with 1 ⊲ A maximum of max Mpart different aj’s.

8: Cj ←
(
Ls−njLm+nj

nj

)
⊲ Compute all ways nj sites can be aligned in a sequence.

9: for l = 1, 2, ..., pNm
do

10: aj ← Mpart(l, nj) ⊲ Read an element from Mpart.

11: if aj > 0 then ⊲ Ignore elements that do not contribute to Cp.

12: if Ctmp(aj) = 1 then ⊲ Only compute combinations if necessary.

13: Ctmp(aj) ← C
aj

j

14: end if

15: Cpart(l) ← Cpart(l) ·
(
Nrem

aj

)
· Ctmp(aj) ⊲ Multiply in the contribution from the current aj .

16: Nrem(l) ← Nrem(l) − aj ⊲ Remove current aj in preparation for the next aj .

17: end if

18: end for

19: end for

20: for l = 1, 2, ..., pNm
do ⊲ Sum up the contributions from all partition sets.

21: Cp,ANR ← Cp,ANR + Cpart(l)
22: end for

23: return Cp,ANR

24: end procedure

TABLE IV
EXAMPLE PARTITIONING MATRIX Mpart FOR Nm = nmax = 5.

Partition Sites per sequence, nj

number, l 1 2 3 4 5

1 0 0 0 0 1
2 1 0 0 1 0
3 0 1 1 0 0
4 2 0 1 0 0
5 1 2 0 0 0
6 3 1 0 0 0
7 5 0 0 0 0

number. There are many redundant numbers in a partition set,

as can be seen in our example in Table IV: The binomial

coefficients and Cp,many components are computed multiple

times for aj = 1 and nj = 1, nj = 2, and nj = 1. In

this small example, these binomials and Cp,many components

are computed 12 times each, versus the actual 10 unique

binomial coefficients and 9 Cp,part’s. When Nm increases,

this difference becomes larger. For instance, 97 Cp,many

components must be computed when using Nm = 10, while

only 26 are strictly required.

We propose an improved algorithm to compute Cp,ANR,

shown in Algorithm 1. The algorithm basically computes the

Cp,part components generically for each unique nj , and then

raised to the appropriate power for each unique {aj , nj} pair.

The
(
Nrem

aj

)
components are computed for each {Nrem, aj}

pair, and Nrem is adjusted for each non-zero element in each

partition l.

III. EVALUATION

The number of combinations possible with an ANR align-

ment, Cp,ANR, is always at least as large as the number

of possible combinations when using ZOOPS. The lowest

number of combinations using ANR is when there is room

for at most one site per sequence, i.e. when

Nmax =

⌊
Ls

Lm

⌋
= 1. (16)

When (16) is satisfied, the alignment becomes a ZOOPS

alignment.
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Assuming that Nmax ≤ 2, the ratio of combinations

Cp,ANR/Cp,ZOOPS will depend on Ls, Ns, and nmax. In or-

der to illustrate how the ratio of Cp,ANR/Cp,ZOOPS changes,

consider the following four examples. Assume a motif of

length Lm = 40 in all four examples.

When computing p-values for an alignment, it can be useful

to adjust the number of sites, Nm, and select the alignment

which meets some predetermined E-value threshold. In the

first two examples, the data set consists of a fairly small

number of gene sequences with Ns = 10. Since ZOOPS is

only valid for 2 ≤ Nm ≤ Ns, no Nm larger than 10 is

considered. Adjusting the length of the gene sequences, Ls,

from 100 to 300 the ratios for each Ls are shown in Fig. 10.

2 4 6 8 10

100

101

102

103

NUMBER OF SITES, Nm

R
A

T
IO

C
p

,A
N

R

C
p

,Z
O

O
P

S

Ls = 100
Ls = 150
Ls = 200
Ls = 250
Ls = 300

Fig. 10. Ratio of Cp,ANR vs. Cp,ZOOPS for Ns = 10 and Lm = 40.

It is clear from Fig. 10 that increasing the number of sites

to align leads to a significantly larger number of possible

combinations for ANR than for ZOOPS; up to several orders

of magnitude. The ratio also increases with larger Ns, but the

increase will taper off when the length of the sequences are

long enough to fit all Nm sites in each, i.e. when nmax = Nm.

In the next example, the length of the sequences is set to

be Ls = 100, while the length of the motif is changed from

10 to 50 nucleotides. The results can be seen in Fig. 11. Here,

Lm = 10 represents the upper bound, since all 10 of the sites

may fit inside a single sequence, while Lm = 50 is close to the

lower bound since only two sites will fit in a sequence. Again,

the trend of increasing ratio with increasing Nm is clear, and

more pronounced the larger Nmax becomes.

In the next two examples, the number of sequences in the

gene set has been increased to Ns = 100. The third example

uses the same Ls values as the first example, but since there

are more sequences to align in, the number of motifs has been

increased to span from Nm = 2 up to 20. The results are

presented in Fig. 12. The trend of the ratio between ANR

and ZOOPS is much more subdued here than in the first two

examples. The reason for this is due to the increasing influence

of the
(
Ls−njLm+nj

nj

)aj
coefficients versus the effect of the

integer partitioning contributions.

In the last example, the length of the sequence has again
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Fig. 11. Ratio of Cp,ANR vs. Cp,ZOOPS for Ns = 10 and Ls = 100.
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Fig. 12. Ratio of Cp,ANR vs. Cp,ZOOPS for Ns = 100 and Lm = 40.

been fixed to Ls = 100, while the length of the motif is

adjusted. The results are shown in Fig. 13. As with the pre-

vious example, the increase in the Cp,ANR/Cp,ZOOPS ratio

is subdued. Again, the influence of the integer partitioning

has a minor role compared to the increase in the number of

sequences in the data set.

IV. CONCLUSION AND DISCUSSION

In this paper we have explored the combinatorial aspects

of genetic motif alignments. We have shown that using a

p-value to compute an E-value for a motif alignment can

lead to an E-value that diverges significantly from the correct

value if the alignment model used in the calculations does

not correspond with the actual motif alignments. E.g., using

a zero or one occurrence per sequence (ZOOPS) alignment

model for an alignment which is actually an any number of

repetition (ANR) model.

We have shown the mathematical theory behind the com-

putation of the accurate number of alignment possibilities
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Fig. 13. Ratio of Cp,ANR vs. Cp,ZOOPS for Ns = 100 and Ls = 100.

for each of the different alignment models, such as one

occurrence per sequence (OOPS), ZOOPS, and ANR, and we

have also suggested an algorithm for computing the number

of combinations for the ANR model. We have also compared

the total number of combinations for the cases of ZOOPS

and ANR for various example scenarios, and found that when

the number of motif match sites is within the same range as

the number of sequences there is a large difference between

the numbers produced for the ZOOPS and ANR models. In

those cases where the data sets has a much larger number

of sequences than match sites in the motif alignment, the

difference between ZOOPS and ANR is sufficiently low that

using the simpler ZOOPS method for computing the number

of combinations will not lead to a significant difference from

the true number of combinations for ANR.
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