
 

 

 

  

Abstract—In the last decades, a number of robust fuzzy 

clustering algorithms have been proposed to partition data sets 

affected by noise and outliers. Robust fuzzy C-means (robust-FCM) 

is certainly one of the most known among these algorithms. In 

robust-FCM, noise is modeled as a separate cluster and is 

characterized by a prototype that has a constant distance δ  from all 

data points. Distance δ  determines the boundary of the noise cluster 

and therefore is a critical parameter of the algorithm. Though some 

approaches have been proposed to automatically determine the most 

suitable δ  for the specific application, up to today an efficient and 

fully satisfactory solution does not exist. The aim of this paper is to 

propose a novel method to compute the optimal δ  based on the 

analysis of the distribution of the percentage of objects assigned to 

the noise cluster in repeated executions of the robust-FCM with 

decreasing values of δ . The extremely encouraging results obtained 

on some data sets found in the literature are shown and discussed.  

 

Keywords— noise prototype, robust fuzzy clustering, robust 

fuzzy C-means.  

I. INTRODUCTION 

LUSTERING algorithms are widely used in different 

engineering and scientific fields such as pattern 

recognition, data mining, knowledge discovery [1]. A 

clustering algorithm partitions a data set into homogeneous 

groups (called clusters) in such a way that objects within a 

cluster are more similar to each other than objects belonging to 

different clusters. A large amount of clustering algorithms 

have been proposed in the literature. Most of them assume that 

data sets are not affected by noise and outliers. In real 

applications, however, this assumption is often false due to 

different types of problems which may influence the process of 

data collection. Thus, clustering algorithms can generate 

misleading partitions. To overcome this problem, in the last 

years some clustering algorithms robust against outliers and 

noise have been introduced [2]. Among these, very few 

consider fuzzy rather than crisp partitions. One of the most 

known robust fuzzy clustering algorithms is certainly the 

robust version of fuzzy C-means (robust-FCM) proposed by 

Davé [3]. In robust-FCM, noise is described as a further 
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cluster, denoted noise cluster. The noise cluster is represented 

by a fictitious prototype that has a constant distance δ  from 

all the data objects. Thus, an object belongs to a real cluster 

only if there exists a prototype such that its distance from the 

object is less than δ ; otherwise, the object belongs to the 

noise cluster. We consider an object as belonging to a cluster 

if its membership value to that cluster is higher than to others. 

Noise distance δ  is obviously a critical parameter of the 

algorithm and should be determined very carefully. As 

suggested in [4] and [5], the value of δ  should be based on 

data set statistics: in particular, it should be related to the 

concept of “scale” in robust statistics [2]. Unfortunately, the 

proper estimation of this scale is not a trivial task [6] and 

requires some knowledge of the data, which cannot always be 

supposed in real clustering applications. To overcome these 

problems, this paper proposes a completely different approach 

to compute the most suitable value of δ .  

The method is based on executing the robust-FCM with 

decreasing values of δ  and analyzing the distribution of the 

percentage of objects assigned to the noise cluster. This 

distribution has an abrupt change of slope when the value of 

δ  is so small that objects naturally belonging to real clusters 

are classified into the noise cluster. The abrupt change 

determines the optimal δ . 

We describe in detail results obtained on three different noisy 

data sets. The 100% classification performance obtained on all 

the data sets proves the effectiveness of the method. Further, 

we also show that the method can achieve 100% classification 

performance in absence of noise by determining a distance δ  

which does not include objects in the noise cluster.  

II. THE ROBUST-FCM ALGORITHM 

Fuzzy C-means (FCM) is one of the most used and popular 

fuzzy clustering algorithms. FCM partitions a data set 

minimizing the Euclidean distance between each point 

(strongly) belonging to a cluster and the prototype of the 

cluster. Though several examples of application of FCM to 

real clustering problems have proved the good characteristics 

of this algorithm with respect to stability and partition quality, 

it is well-known in the literature that FCM is not robust against 

noise and outliers.  

Robust-FCM resolves this problem by describing noise as a 

further cluster, the noise cluster. The presence of the noise 

cluster modifies the objective function of FCM as follows: 
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where M is the number of objects, C is the number of classes, 

m is the fuzzification coefficient, ),(
ji

xvd  is the distance 

between the prototype 
i

v  of cluster i and the object 
j

x , iju is 

the membership degree of 
j

x  to the cluster represented by 
i

v , 

and ∑
=

−=

C

i

ijj uu

1

*
1  is the membership of 

j
x  to the noise 

cluster. The minimization of (1) is achieved by updating 

iteratively the membership degrees iju  and the cluster 

prototypes 
i

v  in accordance with the formulas proposed in [3] 

until the difference between two consecutive partitions is 

lower than a pre-fixed real number ε . The formulas are 

derived under the constraint 1
*

1

=+∑
=

j

C

i

ij uu .  

The success of robust-FCM depends on the appropriate choice 

of the noise distance δ . If δ  is too large, robust-FCM 

degenerates to classical FCM and outliers are forced to belong 

to real clusters; on the other hand, if δ  is too small, a lot of 

objects can be considered as noise and misplaced into the 

noise cluster. Though some solutions to automatically 

determine the optimal value of δ  have been proposed in the 

literature, the estimation of this value is still an open-problem. 

In the following, we propose a novel approach which has 

proven to be effective without requiring a preliminary 

knowledge of the data. 

III. AUTOMATIC DETECTION OF THE NOISE DISTANCE 

Intuitively, distance δ  fixes the boundary of the noise 

cluster. This boundary can be visualized as a hyper-spherical 

surface of radius δ  around each real cluster. Fig. 1 shows a 

synthetic data set composed of three different-size clusters and 

randomly added noise. Here, the boundary is represented by 

dashed circles. Let us express distance δ  as 22

M
λδδ = , 

where ]1,0[∈λ  and 
M

δ  is a coarse overestimation of the 

optimal δ . Thus, if 1→λ  no object naturally belonging to a 

cluster is placed into the noise cluster; on the contrary, if 

0→λ , all objects are members of the noise cluster.  

The starting point of our approach is the typical assumption 

of each robust clustering method: the density of objects within 

clusters is considerably higher than outside; furthermore, the 

density within regions of noise is lower than the density in any 

of the clusters. We apply robust-FCM with 1=λ . Then, we 

decrease λ  and apply robust-FCM for each value of λ : the 

number of objects belonging to the noise cluster will remain 

quite low until δ  will be so small as to force objects naturally 

belonging to a cluster to be members of the noise cluster. 

Since the density within real clusters is considerably higher 

than within the noise cluster, when this occurs, the number of 

noise objects increases rapidly. The sudden change of the 

number of noise objects determines the optimal value optλ  of 

λ . In Fig. 1, when the radius of the circles is getting so small 

as to “cut out” some objects of the largest cluster, then the 

number of noise objects increases suddenly. 

Fig. 2 plots the percentage p (white circles in the figure) of 

objects classified in the noise cluster against λ . To speed up 

computation, instead of using a pre-fixed step, we update λ  

by the following rule: 2/
)1()( −

=

tt
λλ , where )(t

λ  and )1( −t
λ  are 

the values of λ  at the current and previous execution of 

robust-FCM. We can observe that p increases very slowly for 

the first five values of λ  (recall that λ  starts from 1 and then 

decreases); then, at the sixth value, the curve shows a sudden 

increase. It is interesting to observe that we have the maximum 

classification rate (white squares in Fig. 2) in proximity to the 

slope change. We decrease λ  and execute robust-FCM until 

the percentage p becomes higher than 0.5. The computation of 

further values is useless since, in our hypothesis, the number of 

noise objects is certainly lower than the number of objects 

belonging to real clusters. To automate the determination of 

optλ , we approximate the distribution of the percentages p 

with a Pareto curve -s

p=q λ  (continuous line in Fig. 2). In the 

approximation, we do not consider the points with p = 0. 

Indeed, these points are not expressive of the trend of p. The 

estimation of q and s can be easily obtained by an 

anamorphosis procedure, which transforms λ  and p in 

logarithmic scale, and therefore by applying a linear least-

squared error minimization in the new scale. We choose optλ  

as the value of λ  where the prime derivative of the Pareto 

curve is equal to –1, that is, the tangent to the curve forms an 

angle of 
4

π  with the λ  axis. This leads to compute optλ  as 

1+
=

s
opt sqλ . In Fig. 2, the percentage p and the classification 

rate in correspondence of optλ  are represented by a black 

circle and a black square, respectively. 

x
2
 

x1  
Fig. 1. A synthetic data set with three clusters and ten outliers. 
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The method can be summarized as follows: 

1. Compute 
M

xxd

M

j

j

M

∑
=

=

1

2

2

),(

δ , with ∑=
=

M

j
j

x
M

x

1

1
. This 

value of δ  guarantees that no object naturally belonging to 

a cluster is a member of the noise cluster. 

2. Initialize an unsigned integer t  to 0 and )(t
λ  to 1. Fix the 

number C of clusters, the fuzzification coefficient m, and 

the termination error ε  (in the experiments, we used m = 2 

and 001.0=ε ). Execute robust-FCM with an initial 

random partition. Compute the percentage )0(
p  of objects 

belonging to the noise cluster. 

3. Increase t and compute 2/
)1()( −

=

tt
λλ . 

4. Execute robust-FCM using as initial partition the final 

partition at iteration t-1.  

5. Compute the percentage )(t
p  of objects belonging to the 

noise cluster. If 5.0
)(
≤

t
p  go to item 3. 

6. Approximate the values )(t
p  by a Pareto curve and 

determine optλ  as described above. 

We applied the method to the data set shown in Fig. 1. We 

achieved 100% classification rate. We executed the robust-

FCM 10 times, but thanks to the use of the final partition of a 

trial as initial partition of the subsequent, robust-FCM 

converged in very few steps (about 4-5 against 20-30 of the 

random initialization).  

 Percentage of noise objects 

 Pareto curve 
Classification rate 

y
 

λ  
Fig. 2. Percentage of noise objects and classification rate for the data set in 

Fig. 1. 

To verify the reliability of our approach, we eliminated the 

outliers in the data set in Fig. 1. We wanted to check whether 

the method was able to determine a value of λ , which did not 

include objects in the noise cluster. Fig. 3 plots the percentage 

p of objects classified in the noise cluster and the percentage 

of correct classifications against λ . Making the prime 

derivative of the Pareto curve equal to –1, we obtain a optλ  

which corresponds to 100% classification rate. No object, 

therefore, belongs to the noise cluster, thus confirming that our 

method can be also used in absence of noise and outliers.  

 

y
 

λ 

 Percentage of noise objects 

 Pareto curve 
Classification rate 

 
Fig. 3. Percentage of noise objects and classification rate for the data set in 

Fig. 1 (after eliminating the outliers). 

IV. EXPERIMENTAL RESULTS 

A. Synthetic dataset  

Fig. 4 shows the second data set used in the experiments. 

The data set is extracted from [7] and consists of two distinct 

clusters and six outliers (black stars) scattered over the 2-

dimensional space. The data set is interesting because the 

clusters are not strongly compact. Fig. 5 plots the percentage p 

of objects classified in the noise cluster and the percentage of 

correct classifications against λ . Since the number of points 

belonging to each cluster is comparable to the number of 

outliers, we can observe that p shows two changes of slope: the 

first change is quite gradual and occurs when the noise cluster 

starts to include the outliers; the second is abrupt and occurs 

when points belonging naturally to one of two real clusters are 

included into the noise cluster. This second variation of the 

slope identifies the optimal λ , which allows establishing an 

optimal boundary between the noise cluster and the real 

clusters. The continuous line in Fig. 5 shows the Pareto curve 

that approximates the distribution of p. In correspondence of 

optλ , we have again 100% classification rate (black square in 

the figure).  

 

x
2
 

x1  
Fig. 4. A synthetic data set with two clusters and six outliers. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:1, 2007 

219International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

1,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

16
4.

pd
f



 

 

 

y
 

λ 

 Percentage of noise objects 

 Pareto curve 

Classification rate 

 
Fig. 5. Percentage of noise objects and classification rate for the data set in 

Fig. 4. 

B. Iris dataset  

The last data set is extracted from [7] and is obtained by 

adding six randomly generated patterns to the well-known Iris 

data set. Iris consists of 150 patterns characterised by 4 

numeric features which describe, respectively, sepal length, 

sepal width, petal length and petal width. Patterns are equally 

distributed in three classes of Iris flowers, namely Iris Setosa, 

Iris Versicolor and Iris Virginica. Fig. 6 shows the Iris data 

along with the noise in a 3-dimensional feature space. The 

outliers are represented as black stars. Fig. 7 plots the 

percentage p of samples classified in the noise cluster and the 

percentage of correct classifications against λ . In 

correspondence of optλ  all the outliers are classified in the 

noise cluster, thus producing 100% correct classification of the 

outliers and complete separation between noise and data. The 

slight overlap between classes Versicolor and Virginica does 

not allow, however, the robust-FCM to achieve 100% total 

classification rate. This well-known problem depends on the 

clustering algorithm and also affects FCM when applied to Iris 

(without outliers).  

V. CONCLUSIONS 

In the framework of robust fuzzy clustering algorithms, 

robust fuzzy C-means proposed by Davé holds a significant 

position. Though robust-FCM has proved to be effective  in 

identifying noise and outliers, its success strongly depends on 

the appropriate choice of the noise distance. In this paper, we 

have proposed a method to automatically perform this choice. 

The method exploits the typical assumption of all robust 

clustering algorithms, that is, the density of outliers is lower 

than the density of the objects in real clusters. We have 

discussed in detail the application of our method to three data 

sets. We have shown that the method can achieve optimal 

performance with a limited computational effort. To further 

assess the validity of our approach, we performed other 

experiments on some of the noisy datasets shown in [4] and 

[5]. Our approach always selected a optλ  able to allow robust-

FCM to achieve almost 100% classification rate. 
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Fig. 6. Iris data set with outliers represented by three-dimensional features. 
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Fig. 7. Percentage of noise objects and classification rate for the data set in 

Fig. 6. 
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