Search results for: Meshes for Numerical Simulations
392 A Hybrid Multi Objective Algorithm for Flexible Job Shop Scheduling
Authors: Parviz Fattahi
Abstract:
Scheduling for the flexible job shop is very important in both fields of production management and combinatorial optimization. However, it quit difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. The combining of several optimization criteria induces additional complexity and new problems. In this paper, a Pareto approach to solve the multi objective flexible job shop scheduling problems is proposed. The objectives considered are to minimize the overall completion time (makespan) and total weighted tardiness (TWT). An effective simulated annealing algorithm based on the proposed approach is presented to solve multi objective flexible job shop scheduling problem. An external memory of non-dominated solutions is considered to save and update the non-dominated solutions during the solution process. Numerical examples are used to evaluate and study the performance of the proposed algorithm. The proposed algorithm can be applied easily in real factory conditions and for large size problems. It should thus be useful to both practitioners and researchers.Keywords: Flexible job shop, Scheduling, Hierarchical approach, simulated annealing, tabu search, multi objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010391 Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy
Authors: Deepak D, Anjaiah D, Yagnesh Sharma N.
Abstract:
It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.Keywords: Abrasive water suspension jet, Skin friction coefficient, Jet kinetic energy, Particulate loading, Stokes number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187390 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.
Keywords: Preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718389 Buckling Analysis of Rectangular Plates under the Combined Action of Shear and Uniaxial Stresses
Authors: V. Piscopo
Abstract:
In the classical buckling analysis of rectangular plates subjected to the concurrent action of shear and uniaxial forces, the Euler shear buckling stress is generally evaluated separately, so that no influence on the shear buckling coefficient, due to the in-plane tensile or compressive forces, is taken into account. In this paper the buckling problem of simply supported rectangular plates, under the combined action of shear and uniaxial forces, is discussed from the beginning, in order to obtain new project formulas for the shear buckling coefficient that take into account the presence of uniaxial forces. Furthermore, as the classical expression of the shear buckling coefficient for simply supported rectangular plates is considered only a “rough" approximation, as the exact one is defined by a system of intersecting curves, the convergence and the goodness of the classical solution are analyzed, too. Finally, as the problem of the Euler shear buckling stress evaluation is a very important topic for a variety of structures, (e.g. ship ones), two numerical applications are carried out, in order to highlight the role of the uniaxial stresses on the plating scantling procedures and the goodness of the proposed formulas.Keywords: Buckling analysis, Shear, Uniaxial Stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936388 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process
Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko
Abstract:
A large variety of pipe flange is required in marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and widely used for a long time; however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area. In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented. This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.Keywords: Cold forging, FEA, finite element analysis, Forge- 3D, rotating forming, tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641387 Theoretical Analysis of Self-Starting Busemann Intake Family
Authors: N. Moradian, E. Timofeev, R. Tahir
Abstract:
In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.Keywords: Busemann intake, conical shock, overboard spillage, startability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139386 Numerical Study of Airfoils Aerodynamic Performance in Heavy Rain Environment
Authors: M. Ismail, Cao Yihua, Zhao Ming, Abu Bakar
Abstract:
Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of cambered NACA 64-210 and symmetric NACA 0012 airfoils. Our results show significant increase in drag and decrease in lift. We used preprocessing software gridgen for creation of geometry and mesh, used fluent as solver and techplot as postprocessor. Discrete phase modeling called DPM is used to model the rain particles using two phase flow approach. The rain particles are assumed to be inert. Both airfoils showed significant decrease in lift and increase in drag in simulated rain environment. The most significant difference between these two airfoils was the NACA 64-210 more sensitivity than NACA 0012 to liquid water content (LWC). We believe that the results showed in this paper will be useful for the designer of the commercial aircrafts and UAVs, and will be helpful for training of the pilots to control the airplanes in heavy rain.
Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273385 Stress Analysis of Adhesively Bonded Double- Lap Joints Subjected to Combined Loading
Authors: Solyman Sharifi, Naghdali Choupani
Abstract:
Adhesively bonded joints are preferred over the conventional methods of joining such as riveting, welding, bolting and soldering. Some of the main advantages of adhesive joints compared to conventional joints are the ability to join dissimilar materials and damage-sensitive materials, better stress distribution, weight reduction, fabrication of complicated shapes, excellent thermal and insulation properties, vibration response and enhanced damping control, smoother aerodynamic surfaces and an improvement in corrosion and fatigue resistance. This paper presents the behavior of adhesively bonded joints subjected to combined thermal loadings, using the numerical methods. The joint configuration considers aluminum as central adherend with six different outer adherends including aluminum, steel, titanium, boronepoxy, unidirectional graphite-epoxy and cross-ply graphite-epoxy and epoxy-based adhesives. Free expansion of the joint in x direction was permitted and stresses in adhesive layer and interfaces calculated for different adherends.Keywords: Thermal stress, patch repair, Adhesive joint, Finiteelement analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877384 Control Chart Pattern Recognition Using Wavelet Based Neural Networks
Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim
Abstract:
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.
Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480383 The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames
Authors: David A. Roke, M. R. Hasan
Abstract:
Conventional concentrically-braced frame (CBF) systems have limited drift capacity before brace buckling and related damage leads to deterioration in strength and stiffness. Self-centering concentrically-braced frame (SC-CBF) systems have been developed to increase drift capacity prior to initiation of damage and minimize residual drift. SC-CBFs differ from conventional CBFs in that the SC-CBF columns are designed to uplift from the foundation at a specified level of lateral loading, initiating a rigid-body rotation (rocking) of the frame. Vertically-aligned post-tensioning bars resist uplift and provide a restoring force to return the SC-CBF columns to the foundation (self-centering the system). This paper presents a parametric study of different prototype buildings using SC-CBFs. The bay widths of the SC-CBFs have been varied in these buildings to study different geometries. Nonlinear numerical analyses of the different SC-CBFs are presented to illustrate the effect of frame geometry on the behavior and dynamic response of the SC-CBF system.Keywords: Earthquake resistant structures, nonlinear analysis, seismic analysis, self-centering structural systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920382 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri
Abstract:
Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.
Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208381 Thermal Analysis of a Transport Refrigeration Power Pack Unit Using a Coupled 1D/3D Simulation Approach
Authors: A. Kospach, A. Mladek, M. Waltenberger, F. Schilling
Abstract:
In this work, a coupled 1D/3D simulation approach for thermal protection and optimization of a trailer refrigeration power pack unit was developed. With the developed 1D/3D simulation approach thermal critical scenarios, such as summer, high-load scenarios are investigated. The 1D thermal model was built up consisting of the thermal network, which includes different point masses and associated heat transfers, the coolant and oil circuits, as well as the fan unit. The 3D computational fluid dynamics (CFD) model was developed to model the air flow through the power pack unit considering convective heat transfer effects. In the 1D thermal model the temperatures of the individual point masses were calculated, which served as input variables for the 3D CFD model. For the calculation of the point mass temperatures in the 1D thermal model, the convective heat transfer rates from the 3D CFD model were required as input variables. These two variables (point mass temperatures and convective heat transfer rates) were the main couple variables for the coupled 1D/3D simulation model. The coupled 1D/3D model was validated with measurements under normal operating conditions. Coupled simulations for summer high-load case were than performed and compared with a reference case under normal operation conditions. Hot temperature regions and components could be identified. Due to the detailed information about the flow field, temperatures and heat fluxes, it was possible to directly derive improvement suggestions for the cooling design of the transport refrigeration power pack unit.
Keywords: Coupled thermal simulation, thermal analysis, transport refrigeration unit, 3D computational fluid dynamics, 1D thermal modelling, thermal management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206380 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.
Keywords: Finite element, steel shear wall, nonlinear, earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842379 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely, where the subspace of the covariance matrix is decomposed to separate the signal subspace from noise subspace. The decomposition is normally done by using either the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of the auto-correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. This paper considers the estimation of the multipath slow frequency hopping (FH) channel using noise space based method. In particular, an efficient method is proposed to estimate the multipath time delays by applying multiple signal classification (MUSIC) algorithm which is based on the null space extracted by the rank revealing LU (RRLU) factorization. As a result, precise information is provided by the RRLU about the numerical null space and the rank, (i.e., important tool in linear algebra). The simulation results demonstrate the effectiveness of the proposed novel method by approximately decreasing the computational complexity to the half as compared with RRQR methods keeping the same performance.
Keywords: Time Delay Estimation, RRLU, RRQR, MUSIC, LS-ESPRIT, LS-ESPRIT, Frequency Hopping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044378 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints
Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann
Abstract:
This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.
Keywords: Rail-track components, maintenance, optimal clustering, possession capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995377 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques
Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil
Abstract:
Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.
Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927376 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.
Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275375 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795374 A Comparison of Some Thresholding Selection Methods for Wavelet Regression
Authors: Alsaidi M. Altaher, Mohd T. Ismail
Abstract:
In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency.
Keywords: wavelet regression, simulation, Threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767373 A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System
Authors: Phruksaphanrat B.
Abstract:
This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.Keywords: Machine Selection, Preemptive Fuzzy Goal Programming, Mixed Integer Programming, Application of Tire Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444372 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155371 High Gain Broadband Plasmonic Slot Nano-Antenna
Authors: H. S. Haroyan, V. R. Tadevosyan
Abstract:
High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on finite element method (FEM) has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.
Keywords: Broadband antenna, high gain, slot nano-antenna, plasmonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382370 Optimal Design of Selective Excitation Pulses in Magnetic Resonance Imaging using Genetic Algorithms
Authors: Mohammed A. Alolfe, Abou-Bakr M. Youssef, Yasser M. Kadah
Abstract:
The proper design of RF pulses in magnetic resonance imaging (MRI) has a direct impact on the quality of acquired images, and is needed for many applications. Several techniques have been proposed to obtain the RF pulse envelope given the desired slice profile. Unfortunately, these techniques do not take into account the limitations of practical implementation such as limited amplitude resolution. Moreover, implementing constraints for special RF pulses on most techniques is not possible. In this work, we propose to develop an approach for designing optimal RF pulses under theoretically any constraints. The new technique will pose the RF pulse design problem as a combinatorial optimization problem and uses efficient techniques from this area such as genetic algorithms (GA) to solve this problem. In particular, an objective function will be proposed as the norm of the difference between the desired profile and the one obtained from solving the Bloch equations for the current RF pulse design values. The proposed approach will be verified using analytical solution based RF simulations and compared to previous methods such as Shinnar-Le Roux (SLR) method, and analysis, selected, and tested the options and parameters that control the Genetic Algorithm (GA) can significantly affect its performance to get the best improved results and compared to previous works in this field. The results show a significant improvement over conventional design techniques, select the best options and parameters for GA to get most improvement over the previous works, and suggest the practicality of using of the new technique for most important applications as slice selection for large flip angles, in the area of unconventional spatial encoding, and another clinical use.
Keywords: Selective excitation, magnetic resonance imaging, combinatorial optimization, pulse design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612369 Analysis of GI/M(n)/1/N Queue with Single Working Vacation and Vacation Interruption
Authors: P. Vijaya Laxmi, V. Goswami, V. Suchitra
Abstract:
This paper presents a finite buffer renewal input single working vacation and vacation interruption queue with state dependent services and state dependent vacations, which has a wide range of applications in several areas including manufacturing, wireless communication systems. Service times during busy period, vacation period and vacation times are exponentially distributed and are state dependent. As a result of the finite waiting space, state dependent services and state dependent vacation policies, the analysis of these queueing models needs special attention. We provide a recursive method using the supplementary variable technique to compute the stationary queue length distributions at pre-arrival and arbitrary epochs. An efficient computational algorithm of the model is presented which is fast and accurate and easy to implement. Various performance measures have been discussed. Finally, some special cases and numerical results have been depicted in the form of tables and graphs.
Keywords: State Dependent Service, Vacation Interruption, Supplementary Variable, Single Working Vacation, Blocking Probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158368 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines
Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar
Abstract:
River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.
Keywords: Micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110367 Feedrate Optimization for Ball-end milling of Sculptured Surfaces using Fuzzy Logic Controller
Authors: Njiri J. G., Ikua B. W., Nyakoe G. N.
Abstract:
Optimization of cutting parameters important in precision machining in regards to efficiency and surface integrity of the machined part. Usually productivity and precision in machining is limited by the forces emanating from the cutting process. Due to the inherent varying nature of the workpiece in terms of geometry and material composition, the peak cutting forces vary from point to point during machining process. In order to increase productivity without compromising on machining accuracy, it is important to control these cutting forces. In this paper a fuzzy logic control algorithm is developed that can be applied in the control of peak cutting forces in milling of spherical surfaces using ball end mills. The controller can adaptively vary the feedrate to maintain allowable cutting force on the tool. This control algorithm is implemented in a computer numerical control (CNC) machine. It has been demonstrated that the controller can provide stable machining and improve the performance of the CNC milling process by varying feedrate.
Keywords: Ball-end mill, feedrate, fuzzy logic controller, machining optimization, spherical surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485366 Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results
Authors: Mohammad Shafigh, Nasser Fatouraee, Amirsaied Seddighi
Abstract:
Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.
Keywords: Anisotropic Tissue, Cerebral Blood Vessels, Fung Model, Nonlinear Material, Plain Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3359365 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect
Authors: Kai-Long Hsiao
Abstract:
A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584364 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713363 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details
Authors: Wentao He, Jingxi Liu, De Xie
Abstract:
It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.
Keywords: Crack path, Fatigue crack, Fatigue live, FCG-System, Virtual crack closure technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481