Search results for: Experimental Study.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14861

Search results for: Experimental Study.

12191 A Prediction-Based Reversible Watermarking for MRI Images

Authors: Nuha Omran Abokhdair, Azizah Bt Abdul Manaf

Abstract:

Reversible watermarking is a special branch of image watermarking, that is able to recover the original image after extracting the watermark from the image. In this paper, an adaptive prediction-based reversible watermarking scheme is presented, in order to increase the payload capacity of MRI medical images. The scheme divides the image into two parts, Region of Interest (ROI) and Region of Non-Interest (RONI). Two bits are embedded in each embeddable pixel of RONI and one bit is embedded in each embeddable pixel of ROI. The experimental results demonstrate that the proposed scheme is able to achieve high embedding capacity. This is mainly caused by two reasons. First, the pixels that were excluded from data embedding due to overflow/underflow are used for data embedding. Second, large location map that need to be added to watermark data as overhead is eliminated and thus lower data embedding capacity is prevented. Moreover, the scheme provides good visual quality to the watermarked image.

Keywords: Medical image watermarking, reversible watermarking, Difference Expansion, Prediction-Error Expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
12190 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM

Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis

Abstract:

It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
12189 Electric Field Analysis and Experimental Evaluation of 400 kV Silicone Composite Insulator

Authors: M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya

Abstract:

In electrical power system, high voltage insulators are necessary for consistent performance. All insulators are exposed to different mechanical and electrical stresses. Mechanical stresses occur due to various loads such as wind load, hardware and conductors weight. Electrical stresses are due to over voltages and operating voltages. The performance analysis of polymer insulators is an essential, as most of the electrical utility companies are employing polymer insulators for new and updated transmission lines. In this paper, electric field is analyzed for 400 kV silicone (SiR) composite insulator by COULOMB 3D software based on boundary element method. The field results are compared with EPRI reference values. Our results proved that values at critical regions are very less compared to EPRI reference values. And also experimentally 400 kV single V suspension string is evaluated as per IEC standards.

Keywords: Electric field analysis, silicone composite insulator, boundary element method, RIV, Corona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
12188 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model

Authors: Chaudhuri Manoj Kumar Swain, Susmita Das

Abstract:

This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.

Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
12187 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
12186 OCIRS: An Ontology-based Chinese Idioms Retrieval System

Authors: Hu Haibo, Tu Chunmei, Fu Chunlei, Fu Li, Mao Fan, Ma Yuan

Abstract:

Chinese Idioms are a type of traditional Chinese idiomatic expressions with specific meanings and stereotypes structure which are widely used in classical Chinese and are still common in vernacular written and spoken Chinese today. Currently, Chinese Idioms are retrieved in glossary with key character or key word in morphology or pronunciation index that can not meet the need of searching semantically. OCIRS is proposed to search the desired idiom in the case of users only knowing its meaning without any key character or key word. The user-s request in a sentence or phrase will be grammatically analyzed in advance by word segmentation, key word extraction and semantic similarity computation, thus can be mapped to the idiom domain ontology which is constructed to provide ample semantic relations and to facilitate description logics-based reasoning for idiom retrieval. The experimental evaluation shows that OCIRS realizes the function of searching idioms via semantics, obtaining preliminary achievement as requested by the users.

Keywords: Chinese idiom, idiom retrieval, semantic searching, ontology, semantics similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
12185 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: Ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453
12184 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel

Authors: K. Rattanachan

Abstract:

In sheet metal forming process, raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloyed, which have the different unit cell, mechanical property and chemical composition. They were forming into cone shape specimens having 100 mm diameter with different wall’s incline angle: 90o, 75o and 60o. The investigation was continued until the specimens formed surface facture. The experimental result showed that the smaller the wall incline angle higher the formability with the both materials. The formability limit of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 has higher formability than SUS 304. This result can be used as the initial data in designing the single point incremental forming parts.

Keywords: NC incremental forming, Single point incremental forming, Wall incline angle, Formability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
12183 More Realistic Model for Simulating Min Protein Dynamics: Lattice Boltzmann Method Incorporating the Role of Nucleoids

Authors: J.Yojina, W. Ngamsaad, N. Nuttavut, D.Triampo, Y. Lenbury, W. Triampo, P. Kanthang, S.Sriyab

Abstract:

The dynamics of Min proteins plays a center role in accurate cell division. Although the nucleoids may presumably play an important role in prokaryotic cell division, there is a lack of models to account for its participation. In this work, we apply the lattice Boltzmann method to investigate protein oscillation based on a mesoscopic model that takes into account the nucleoid-s role. We found that our numerical results are in reasonably good agreement with the previous experimental results On comparing with the other computational models without the presence of nucleoids, the highlight of our finding is that the local densities of MinD and MinE on the cytoplasmic membrane increases, especially along the cell width, when the size of the obstacle increases, leading to a more distinct cap-like structure at the poles. This feature indicated the realistic pattern and reflected the combination of Min protein dynamics and nucleoid-s role.

Keywords: lattice Boltzmann method, cell division, Minproteins oscillation, nucleoid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
12182 Effect of Twelve Weeks Brisk Walking on Blood Pressure, Body Mass Index, and Anthropometric Circumference of Obese Males

Authors: Kaukab Azeem

Abstract:

Introduction: Obesity is a major health risk issue in the present day of life for one and all globally. Obesity is one of the major concerns for public health according to recent increasing trends in obesity-related diseases such as Type 2 diabetes. ( Kazuya, 1994).and hyperlipidemia, (Sakata,1990) .which are more prevalent in Japanese adults with body mass index (BMI) values Z25 kg/m2.( Japanese Ministry of Health and Welfare,1997). The purpose of the study was to assess the effect of twelve weeks of brisk walking on blood pressure and body mass index, anthropometric measurements of obese males. Method: Thirty obese (BMI= above 30) males, aged 18 to 22 years, were selected from King Fahd University of Petroleum & Minerals, Saudi Arabia. The subject-s height (cm) was measured using a stadiometer and body mass (kg) was measured with a electronic weighing machine. BMI was subsequently calculated (kg/m2). The blood pressure was measured with standardized sphygmomanometer in mm of Hg. All the measurements were taken twice before and twice after the experimental period. The pre and post anthropometric measurements of waist and hip circumference were measured with the steel tape in cm. The subjects underwent walking schedule two times in a week for 12 weeks. The 45 minute sessions of brisk walking were undertaken at an average intensity of 65% to 85% of maximum HR (HRmax; calculated as 220-age). Results & Discussion: Statistical findings revealed significant changes from pre test to post test in case of both systolic blood pressure and diastolic blood pressure in the walking group. Results also showed significant decrease in their body mass index and anthropometric measurements i.e. (waist & hip circumference). Conclusion: It was concluded that twelve weeks brisk walking is beneficial for lowering of blood pressure, body mass index, and anthropometric circumference of obese males.

Keywords: Anthropometric, Blood pressure, Body mass index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
12181 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
12180 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469
12179 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
12178 Revising the Student Experiment Materials and Practices at the National University of Laos

Authors: Syhalath Xaphakdy, Toshio Nagata, Saykham Phommathat, Pavy Souwannavong, Vilayvanh Srithilat, Phoxay Sengdala, Bounaom Phetarnousone, Boualay Siharath, Xaya Chemcheng

Abstract:

The National University of Laos (NUOL) invited a group of volunteers from the Japan International Cooperation Agency (JICA) to revise the physics experiments to utilize the materials that were already available to students. The intension was to review and revise the materials regularly utilized in physics class. The project had access to limited materials and a small budget for the class in the unit; however, by developing experimental textbooks related to mechanics, electricity, and wave and vibration, the group found a way to apply them in the classroom and enhance the students teaching activities. The aim was to introduce a way to incorporate the materials and practices in the classroom to enhance the students learning and teaching skills, particularly when they graduate and begin working as high school teachers.

Keywords: NUOL, JICA, physics experiment materials, small budget, mechanics, electricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
12177 Computational Fluid Dynamics Expert System using Artificial Neural Networks

Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan

Abstract:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
12176 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake

Abstract:

This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng- Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: Aspen Plus, Modelling, Plug Flow Reactor, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9396
12175 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Authors: D. Singh, R. Yousefi, M. Boroushaki

Abstract:

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
12174 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

Authors: C. Ganesh Babu, P. T. Vanathi

Abstract:

In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
12173 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN

Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang

Abstract:

Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.

Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
12172 Power-Efficient AND-EXOR-INV Based Realization of Achilles' heel Logic Functions

Authors: Padmanabhan Balasubramanian, R. Chinnadurai

Abstract:

This paper deals with a power-conscious ANDEXOR- Inverter type logic implementation for a complex class of Boolean functions, namely Achilles- heel functions. Different variants of the above function class have been considered viz. positive, negative and pure horn for analysis and simulation purposes. The proposed realization is compared with the decomposed implementation corresponding to an existing standard AND-EXOR logic minimizer; both result in Boolean networks with good testability attribute. It could be noted that an AND-OR-EXOR type logic network does not exist for the positive phase of this unique class of logic function. Experimental results report significant savings in all the power consumption components for designs based on standard cells pertaining to a 130nm UMC CMOS process The simulations have been extended to validate the savings across all three library corners (typical, best and worst case specifications).

Keywords: Achilles' heel functions, AND-EXOR-Inverter logic, CMOS technology, low power design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
12171 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution

Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell

Abstract:

This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.

Keywords: Detection, leakage, neural networks, sensors, water distribution networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
12170 Biological Methods to Control Parasitic Weed Phelipanche ramosa L. Pomel in the Field Tomato Crop

Authors: F. Lops, G. Disciglio, A. Carlucci, G. Gatta, L. Frabboni, A. Tarantino, E. Tarantino

Abstract:

Phelipanche ramosa L. Pomel is a root holoparasitic weed plant of many cultivations, particularly of tomato (Lycopersicum esculentum L.) crop. In Italy, Phelipanche problem is increasing, both in density and in acreage. The biological control of this parasitic weed involves the use of living organisms as numerous fungi and bacteria that can infect the parasitic weed, while it may improve the crop growth. This paper deals with the biocontrol with microorganism, including Arbuscular mycorrhizal (AM) fungi and fungal pathogens as Fusarium oxisporum spp. Colonization of crop roots by AM fungi can provide protection of crops against parasitic weeds because of a reduction in their seed germination and attachment, while F. oxisporum, isolated from diseased broomrape tubercles, proved to be highly virulent on P. ramosa. The experimental trial was carried out in open field at Foggia province (Apulia Region, Southern Italy), during the spring-summer season 2016, in order to evaluate the effect of four biological treatments: AM fungi and Fusarium oxisporum applied in the soil alone or combined together, and Rizosum Max® product, compared with the untreated control, to reduce the P. ramosa infestation in processing tomato crop. The principal results to be drawn from this study under field condition, in contrast of those reported previously under laboratory and greenhouse conditions, show that both AM fungi and F. oxisporum do not provide the reduction of the number of emerged shoots of P. ramosa. This can arise probably from the low efficacy seedling of the agent pathogens for the control of this parasite in the field. On the contrary, the Rizosum Max® product, containing AM fungi and some rizophere bacteria combined with several minerals and organic substances, appears to be most effective for the reduction of P. ramosa infestation.

Keywords: Arbuscular mycorrhizal fungi, biocontrol methods, Phelipanche ramosa, F. oxisporum spp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
12169 Color Image Edge Detection using Pseudo-Complement and Matrix Operations

Authors: T. N. Janakiraman, P. V. S. S. R. Chandra Mouli

Abstract:

A color image edge detection algorithm is proposed in this paper using Pseudo-complement and matrix rotation operations. First, pseudo-complement method is applied on the image for each channel. Then, matrix operations are applied on the output image of the first stage. Dominant pixels are obtained by image differencing between the pseudo-complement image and the matrix operated image. Median filtering is carried out to smoothen the image thereby removing the isolated pixels. Finally, the dominant or core pixels occurring in at least two channels are selected. On plotting the selected edge pixels, the final edge map of the given color image is obtained. The algorithm is also tested in HSV and YCbCr color spaces. Experimental results on both synthetic and real world images show that the accuracy of the proposed method is comparable to other color edge detectors. All the proposed procedures can be applied to any image domain and runs in polynomial time.

Keywords: Color edge detection, dominant pixels, matrixrotation/shift operations, pseudo-complement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
12168 Production of (V-B) Reinforced Fe Matrix Composites

Authors: Kerim Emre Öksüz, Mehmet Çevik, A. Enbiya Bozdağ, Ali Özer, Mehmet Simsir

Abstract:

Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route.

Keywords: Hardness, Metal matrix composite (MMC), Microstructure, Powder Metallurgy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
12167 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)

Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey

Abstract:

Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH-were prepared by suspension polymerization of vinylbenzyl chloridedivinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen- Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were welldescribed by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.

Keywords: Anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
12166 PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Authors: Rania A. Abul Seoud, Nahed H. Solouma, Abou-Baker M. Youssef, Yasser M. Kadah

Abstract:

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.

Keywords: Link Grammar Parser, Interaction extraction, protein-protein interaction, Natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
12165 W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees

Authors: R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, M. Rahgozar

Abstract:

Mining frequent tree patterns have many useful applications in XML mining, bioinformatics, network routing, etc. Most of the frequent subtree mining algorithms (i.e. FREQT, TreeMiner and CMTreeMiner) use anti-monotone property in the phase of candidate subtree generation. However, none of these algorithms have verified the correctness of this property in tree structured data. In this research it is shown that anti-monotonicity does not generally hold, when using weighed support in tree pattern discovery. As a result, tree mining algorithms that are based on this property would probably miss some of the valid frequent subtree patterns in a collection of trees. In this paper, we investigate the correctness of anti-monotone property for the problem of weighted frequent subtree mining. In addition we propose W3-Miner, a new algorithm for full extraction of frequent subtrees. The experimental results confirm that W3-Miner finds some frequent subtrees that the previously proposed algorithms are not able to discover.

Keywords: Semi-Structured Data Mining, Anti-Monotone Property, Trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
12164 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec

Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro

Abstract:

In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.

Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
12163 Improved Zero Text Watermarking Algorithm against Meaning Preserving Attacks

Authors: Jalil Z., Farooq M., Zafar H., Sabir M., Ashraf E.

Abstract:

Internet is largely composed of textual contents and a huge volume of digital contents gets floated over the Internet daily. The ease of information sharing and re-production has made it difficult to preserve author-s copyright. Digital watermarking came up as a solution for copyright protection of plain text problem after 1993. In this paper, we propose a zero text watermarking algorithm based on occurrence frequency of non-vowel ASCII characters and words for copyright protection of plain text. The embedding algorithm makes use of frequency non-vowel ASCII characters and words to generate a specialized author key. The extraction algorithm uses this key to extract watermark, hence identify the original copyright owner. Experimental results illustrate the effectiveness of the proposed algorithm on text encountering meaning preserving attacks performed by five independent attackers.

Keywords: Copyright protection, Digital watermarking, Document authentication, Information security, Watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
12162 Gain Tuning Fuzzy Controller for an Optical Disk Drive

Authors: Shiuh-Jer Huang, Ming-Tien Su

Abstract:

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

Keywords: Fuzzy control, gain tuning and optical disk drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587