
 

 

 
Abstract—Due to missing/ambiguous boundaries between the 

prostate and neighboring structures, the presence of shadow artifacts, 
as well as the large variability in prostate shapes, ultrasound prostate 
segmentation is challenging. To handle these issues, this paper 
develops a hybrid method for ultrasound prostate segmentation by 
combining an optimized closed principal curve-based method and the 
evolutionary neural network; the former can fit curves with great 
curvature and generate a contour composed of line segments connected 
by sorted vertices, and the latter is used to express an appropriate map 
function (represented by parameters of evolutionary neural network) 
for generating the smooth prostate contour to match the ground truth 
contour. Both qualitative and quantitative experimental results showed 
that our proposed method obtains accurate and robust performances. 
 

Keywords—Ultrasound prostate segmentation, optimized closed 
polygonal segment method, evolutionary neural network, smooth 
mathematical model.  

I. INTRODUCTION 
IAGNOSING and treating prostate cancer continues to 
burden global populations as it is one of the most common 

noncutaneous cancers and the second leading cause of cancer-
related deaths in men [1]. Accurate segmentation of the prostate 
plays an important role in biopsy needle placement, 
radiotherapy treatment planning, and motion monitoring [2]. 
However, it is still a challenging task due to the following 
reasons: (1) missing boundary caused by the artifacts and the 
presence of other surrounding structures (i.e., the bladder and 
seminal vesicles), (2) ambiguous boundary due to low soft-
tissue contrast in transrectal ultrasound (TRUS) images, (3) 
inhomogeneous intensity distribution of the prostate tissue, and 
(4) various shape of the prostate between different patients. 

The current prostate segmentation techniques can be briefly 
summarized into two groups, fully-automatic methods and 
semi-automatic methods. 

Fully-automatic methods: Automatic prostate segmentation 
in TRUS images has become a hot research area in recent years 
[3], [4]. Orlando et al. [4] used the modified U-Net for 
automatic prostate segmentation on clinically diverse three-
dimensional (3D) TRUS images. The proposed method 
contains two steps: (1) two-dimensional (2D) prediction step 
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based on 2D modified U-Net (mU-Net) to achieve a 2D prostate 
surface; (2) 3D reconstruction step to connect all the 2D 
connected boundaries so to a generate 3D prostate surface. The 
proposed method demonstrated overall segmentation results for 
2D Dice Similarity Coefficient (DSC), 3D DSC of 94.9% and 
94.1%, respectively. The limitation of the study is the use of 
only one observer for providing ground truth segmentations, 
which means it could not directly assess interobserver 
variability for the dataset. In addition, the authors have not 
directly assessed intra-observer variability over several time 
points. Ghavami et al. [5] proposed an automatic slice 
segmentation method in intraoperative TRUS images using 
convolutional neural networks. Furthermore, based on their 
previous work [5], Ghavami et al. [6] further proposed an 
improved convolutional neural network for ultrasound prostate 
segmentation by adding two improvements, such as 1) 
incorporating neighboring slices into the network to use 3D 
information for each slice, and 2) using additive up-sampling 
shortcut architecture to accelerate training time and improve 
performance. The DSC of the method was 89%. However, the 
ground truth of both works was obtained by only one physician, 
which may more likely generate delineation errors without 
other physicians’ checks. 

Semi-automatic methods: In semi-automatic prostate 
segmentation methods, the involvement of a radiologist or an 
expert is often used to initialize the segmentation process or 
sometimes to correct the final segmentation result [7]. To 
minimize human involvement, many research works have been 
reported for semi-automatic prostate segmentation [8]. Zeng et 
al. [9] proposed a convolutional neural network to segment the 
prostate in TRUS images alternative and uses magnetic 
resonance imaging (MRI) priors with good performance. 
However, the authors have not characterized the segmentation 
error by computing a target registration error using more tissue 
landmarks, such as the segmented urethra, bladder, or rectum 
wall. Karimi et al. [10] developed a two-step method for 
accurate segmentation of the prostate clinical target volume in 
TRUS images. The first step was to use an adaptive sampling 
strategy to assist CNN to pay more attention to some images 
that are difficult to segment before the training process. The 
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second step is to identify the uncertain segmentations during 
training, whilst using the prior shape information in the form of 
a statistical shape model to improve the accuracy of uncertain 
segmentations. The DSC of the method is 93.9 ± 3.5%. 
However, all images of this study were collected using 
ultrasound machines and probe from a single manufacturer, 
where the universality of the proposed method was not tested. 
Furthermore, the ground truths provided by expert radiation 
oncologists on TRUS images can be biased at the prostate base 
and apex. 

Recent TRUS image segmentation works include automatic 
and semi-automatic methods. The DSC of most automatic 
models [3], [4] is only near 0.9. In this work, we propose a semi-
automatic segmentation model with radiologist-defined seed 
points as the prior and aim to obtain high accuracy results. 

Our main contributions are summarized as follows: (1) it 
takes advantage of the principal curve’s characteristic to 
approximate the dataset’s center automatically and uses the 

learning ability of the neural network to decrease model error; 
(2) to avoid generating a distorted principal curve by the 
influence of abnormal data points, based on our previously 
proposed closed principal curve method, we designed an 
optimized closed polygonal segment method (OCPS) by newly 
adding a vertex cleaning and optimization step; (3) to find the 
optimal Caputo fractional-order backpropagation training 
network (CFBT), we propose the dynamic storage-based 
differential evolution method (DSDE) by combining the 
historical storage-based and dynamic population size 
mechanism, whilst innovatively using multi-mutation operators 
to guarantee the population diversity and newly added 
constraint conditions to acquire the optimal parameters of the 
differential evolution-based model; and, (4) we design an 
appropriate map function (represented by parameters of 
evolutionary neural network) for generating the smooth prostate 
contour to match the ground truth contour. 
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Fig. 1 Overall architecture of the proposed method 
 

II. OUR APPROACH 

A. Overall 
For accurate prostate contour detection, our method mainly 

contains two steps: (1) the first step is to use the OCPS to 
generate a closed contour consisting of line segments connected 
by sorted vertices by using a small number of radiologist-

defined seed points as point-based prior (Section II B), (2) the 
second stage is to find a suitable map function (realized by the 
evolutionary neural network) to generate a smooth prostate 
contour denoted by the output of neural network (i.e., optimized 
vertices) to match the ground truth contours (Section II C). The 
flowchart of the proposed method is shown in Fig. 1. 
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B. OCPS 

1) Finding Principal Curve 
Principal curve was first defined as a smooth one-

dimensional curve that passes through the middle of an n-
dimensional data set, providing a nonlinear summary of the data 
[11]. Based on the definition of principal curve, Kegl et al. 
proposed the Polygonal Line (PL) method for finding the k-
segment principal curve [12], [13]. The key steps of the PL 
method are projection and vertex optimization steps. The 
projection step is mainly used to classify the data points based 
on which vertex or edge they project. Meanwhile, the vertex 
optimization step is used to update the position of each vertex 

and line segment based on the principle of the nearest distance 
from the data points to the principal curve [12]. Fig. 2 shows 
the details of finding the principal curve. From Fig. 2 (a), the 
first principal component line is used as a starting curve, which 
consists of vertex v1 and v2. By inserting a new vertex v2, all the 
vertices are updated such that the principal curve is updated, 
shown in Fig. 2 (b). Fig. 2 (c) shows that the old vertex is 
replaced and a new vertex is added, which is according to the 
principle of nearest distance from the point to principal curve 
[12]. Principal curve is updated along with the added new 
vertex (Fig. 2 (d)), and a contour consisting of line segments is 
generated (Fig. 2 (e)). 

 

 

Fig. 2 Finding principal curve. x denotes the initial points: v denotes the vertex, black line shows the principal curve, red line shows the deleted 
curve, and black dashed line shows that the data point is projected to the principal curve 

 
2) Closed Polygonal Segment Method 
Based on the PL method [13], we have previously proposed 

a semi-automatic method [14] named Closed Polygonal 
Segment (CPS) that added several improvements (i.e., 
initialization, normalization, stop conditions, and constraint 
conditions) for medical image segmentation. 

3) OCPS 
Compared with our previous work (CPS), the OCPS mainly 

added two improvements: (1) we use an improved vertex 
optimization step [15]; and (2) we add a vertices cleaning 
method for cleaning the abnormal vertices, shown as follows: 
Firstly, we initialize the vertex cleaning label flag(vi) with 1; 
then when the length lsi of i-th line segment is more than or 
equal to data radius r, we set flag(vi) as 1 and reserve the vertex 
vi; otherwise, we remove the vertex vi. r as data radius is used 
to determine the data scaling and should meet the condition 
below: 

 
         (1) 

 
where P is the data points set, and n is the number of data points, 
x and y are the x-axis and y-axis coordinates of the data point 
pi, respectively. 
 

C. Evolutionary Neural Network 
The classical neural network (NN) with gradient-based 

optimization suffers from the drawback, such as the tendency 
of being trapped in the local optimum. In this work, we use the 
DSDE method to search global optimal parameters (i.e., 
connection weights and thresholds) for the CFBT network. 
Then find an appropriate map function (achieved by three-layer 
CFBT) to make the prostate contour smooth, where the smooth 
prostate contour is denoted by the output of the NN (i.e., 
optimized vertices) to match the ground truth contours. 

Compared with Leema et al. [16], we proposed the DSDE by 
adding several improvements, including 1) historical storage-
based mechanism [17], 2) dynamic population size [18], 3) 
multi-mutation operators, and 4) constraint conditions. The key 
steps of DSDE are as follows: 
i. initialize the mean mutation Factor (uF) and mean 

Crossover Rate (uCR) within the range of [0, 1]. 
ii. set the current iteration number G = 1 and define G < the 

max iteration number Gmax. 
iii. if G is larger or equal to Gmax, turn to step (x); or G = G+1, 

then turns to step (ii) 
iv. in the mutation step, the new mutant individual vi

G+1 is 
generated using multi-mutation operators, shown as: 
 

(2) 
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v. in crossover step, the experimental individual ui
G+1 is 

achieved based on [19], shown as: 
 

      (3) 

 
vi. during the selection step, the next candidate xi

G+1 is 
achieved based on [19], shown as: 
 

     (4) 

 
vii. the new population size n is obtained using the dynamic 

population size principle [18]. 
viii. through the added constraint conditions, the next 

individual xi
G+1, successful probability S(uF), and S(uCR) 

are updated. The constraint conditions are shown as: 1) If 
f(vi

G) is less than or equal to f(xi
G), we set vi

G
 equal to the 

next individual xi
G+1, and 2) If f(vi

G) does not equal f(xi
G), 

we set pG to S(uF) or S(uCR); otherwise, we set the 
previous individual xi

G to the next individual xi
G+1. 

ix. both uF and uCR are updated based on the historical 
storage-based mechanism [17]. When G < GMax, we set 
G = G+1, and then it turns to step (ii), where the newly 
obtained uF and uCR will be used for the next loop. 
Otherwise, if G ≥ GMax, it turns to step (x). 

x. the best individual can be selected. 
After determining the initial parameters (i.e., connection 

weights and thresholds) of the CFBT by the DSDE, we will 
train the three-layer CFBT. Due to obtaining vertices consisting 
of x and y-axis coordinates, the output layer of the CFBT 
contains two units, corresponding to x and y, where x and y can 
be treated as the continuous functions c(x(t)) and c(y(t)), 
respectively, on the sequence number of vertices t [14]. Two 
output neurons c(•) of the output layer of the CFBT are 
described as: 

 

 

 (5) 

 
where t is the sequence number of vertices, and Z is the number 
of hidden neurons. wi(i = 1,2,…,Z) and vi,u(i = 1,2,…,Z; u = 1,2) 
are the weights from the input layer to the i-th hidden neuron 
and from the i-th hidden neuron to the u-th output neuron, 
respectively. bu(u = 1,2) and Ti(i = 1,2,…,Z) are the thresholds 
of the u-th output and the i-th hidden neurons, respectively [20]. 

After the training, we will obtain the coordinates of 
optimized vertices to express smooth prostate contour, shown 
as: 

 

 

       (6) 

 
where x(t) and y(t) denote the x-axis and y-axis coordinate of 
the contour points, respectively. 

D. Materials 
A dataset consisting of 300 brachytherapy patients is used to 

prove the performance of our approach, where the dataset was 
independently collected from the Tsinghua University 
Affiliated Beijing Tsinghua Changgung Hospital. All TRUS 
data were collected on a Hitachi HI VISION Avius® ultrasound 
system and an integrated ultrasound high-resolution linear 
transducer with a frequency at the range of 4-8 MHz. The 
mechanical index was set to be 0.4, with a probe detection depth 
of 60 mm, a probe detection frequency of 9 MHz, and an 
amplifier gain between 15 and 40 dB. The original resolution of 
each TRUS image is 1024 768 pixels, and we have rescaled 
to 600 450 pixels. The ground truths are marked and 
determined by five board-certified radiologists. We randomly 
selected 200 patients for training, 60 patients for validation, and 
the remaining 40 patients for testing. All experiments are done 
on a computer with Intel Core i7-8750H CPU and Geforce GTX 
1070 GPU with 8G memory. 

III. RESULTS 
To prove the robustness of our approach, we have added 

different levels of Gaussian noise to corrupt the raw testing 
image, then tested on the corrupted testing images. Table I 
denotes the average testing results on different levels of 
Gaussian noise, where we select the Gaussian noise’s standard 
deviation α in the range of [0, 100]. From Table I, the DSC, Ω, 
and Accuracy (ACC) of the proposed method are as high as 
91.8%, 90.9%, and 91.4%, respectively, at the influence of 
Gaussian noise (standard deviation of Gaussian function σ = 
100). Although σ changes from 0 to 100, the DSC, Ω, and ACC 
fluctuate around 5.18% at most, showing the excellent 
robustness of our method. Meanwhile, we randomly selected 
one slice with its corresponding results for visualization, shown 
in Fig. 3. In Fig. 3, the first row denotes the raw image (σ = 0) 
and other different levels of Gaussian noise (i.e., σ = 50 and 
100) images. The second row is the corresponding histogram of 
the first-row images, where red and green regions denote the 
number of pixels at different gray values of raw and noise 
images, respectively. The third row denotes the compared 
results, where the red line shows the ground truth and the blue 
line shows the experimental results. 

 
TABLE I 

RESULTS ON DIFFERENT LEVELS OF GAUSSIAN NOISE 
 DSC (%) Ω (%) ACC (%) 

Raw set (σ = 0) 96.8 95.7 96.4 
σ = 50 94 92.9 93.9 

σ = 100 91.8 90.9 91.4 
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Fig. 3 Comparison on different levels of Gaussian noise 
 

TABLE II 
QUANTITATIVE COMPARISON WITH OTHER STATE-OF-THE-ART ALGORITHMS 

Reference Method Model DSC  
(%) 

Ω  
(%) 

ACC  
(%) 

[21] Mask-RCNN Deep learning 91.6 90.2 91.3 
[22] Unet++ Deep learning 92.6 91.2 92.1 
[23] Hull-CPS Hybrid 95.2 94.3 95.3 
[24] DBN-CPS Hybrid 95.8 94.5 95.6 

Proposed method Our method Hybrid 96.8 95.7 96.4 
 
To further demonstrate the performance of our method, we 

use two kinds of state-of-the-art methods for comparison, 
including deep learning methods (Mask-RCNN [21] and 
Unet++ [22]), and hybrid methods (Hull-CPS [23] and Deep 
Belief Network (DBN)-CPS [24]). 

All the hybrid methods integrate the principal curve-based 
model with machine learning. Two deep learning methods are 
fully-automatic and three hybrid methods are semi-automatic. 
Table II shows the quantitative segmentation results of all the 
methods. From Table II, all metrics of the hybrid methods are 
higher than the deep learning methods. The DSC, Ω, and ACC 
of the hybrid methods are at least 2.8%, 3.39%, and 3.47% 

higher than those of deep learning methods, respectively, which 
shows that the hybrid methods inherit the characteristics of data 
fitting of principal curve-based method so that the results of 
hybrid methods can better match the ground truth contour. 
Overall, our proposed method has the best performance. 

IV. CONCLUSION 
In this work, a hybrid approach is presented for accurate 

prostate segmentation in TRUS images. The DSC of most 
reported automatic methods [3] is only near 0.9. The goal of our 
work is to obtain accurate results using a small number of 
radiologist-defined seed points as point-based prior. To obtain 
accurate segmentation results, we combined an improved 
OCPS method and improved optimal parameters selection 
machine learning method. Furthermore, an appropriate map 
function (realized by three-layer machine learning) is found to 
make the prostate contour smooth. Results demonstrated that 
our method has good robustness and the better accuracy against 
state-of-the-art methods. Future work can be focused on the 
evaluation of different modalities or organs. 
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