Search results for: wooden structural material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2986

Search results for: wooden structural material

2746 Maintenance Dredging at Port of Townsville

Authors: M. Jaditager, J. Lovisa, N. Sivakugan

Abstract:

The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.

Keywords: Consolidation, dredged material, maintenance dredging, marine sediments, sedimentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
2745 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
2744 Evaluation of Expected Annual Loss Probabilities of RC Moment Resisting Frames

Authors: Saemee Jun, Dong-Hyeon Shin, Tae-Sang Ahn, Hyung-Joon Kim

Abstract:

Building loss estimation methodologies which have been advanced considerably in recent decades are usually used to estimate socio and economic impacts resulting from seismic structural damage. In accordance with these methods, this paper presents the evaluation of an annual loss probability of a reinforced concrete moment resisting frame designed according to Korean Building Code. The annual loss probability is defined by (1) a fragility curve obtained from a capacity spectrum method which is similar to a method adopted from HAZUS, and (2) a seismic hazard curve derived from annual frequencies of exceedance per peak ground acceleration. Seismic fragilities are computed to calculate the annual loss probability of a certain structure using functions depending on structural capacity, seismic demand, structural response and the probability of exceeding damage state thresholds. This study carried out a nonlinear static analysis to obtain the capacity of a RC moment resisting frame selected as a prototype building. The analysis results show that the probability of being extensive structural damage in the prototype building is expected to 0.01% in a year.

Keywords: Expected annual loss, Loss estimation, RC structure, Fragility analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
2743 A Quantitative Model for Determining the Area of the “Core and Structural System Elements” of Tall Office Buildings

Authors: Görkem Arslan Kılınç

Abstract:

Due to the high construction, operation, and maintenance costs of tall buildings, quantification of the area in the plan layout which provides a financial return is an important design criterion. The area of the “core and the structural system elements” does not provide financial return but must exist in the plan layout. Some characteristic items of tall office buildings affect the size of these areas. From this point of view, 15 tall office buildings were systematically investigated. The typical office floor plans of these buildings were re-produced digitally. The area of the “core and the structural system elements” in each building and the characteristic items of each building were calculated. These characteristic items are the size of the long and short plan edge, plan length/width ratio, size of the core long and short edge, core length/width ratio, core area, slenderness, building height, number of floors, and floor height. These items were analyzed by correlation and regression analyses. Results of this paper put forward that; characteristic items which affect the area of "core and structural system elements" are plan long and short edge size, core short edge size, building height, and the number of floors. A one-unit increase in plan short side size increases the area of the "core and structural system elements" in the plan by 12,378 m2. An increase in core short edge size increases the area of the core and structural system elements in the plan by 25,650 m2. Subsequent studies can be conducted by expanding the sample of the study and considering the geographical location of the building.

Keywords: Core area, correlation analysis, floor area, regression analysis, space efficiency, tall office buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
2742 Analysis of a Hydroelectric Plant connected to Electrical Power System in the Physical Domain

Authors: Gilberto Gonzalez-A, Octavio Barriga

Abstract:

A bond graph model of a hydroelectric plant is proposed. In order to analyze the system some structural properties of a bond graph are used. The structural controllability of the hydroelctric plant is described. Also, the steady state of the state variables applying the bond graph in a derivative causality assignment is obtained. Finally, simulation results of the system are shown.

Keywords: Bond graph, hydraulic plant, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
2741 Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

Authors: Ming-Hui Lee, Tsung-Chien Chen, Yuh-Shiou Tai

Abstract:

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Keywords: Fuzzy Input Estimator, Kalman Filter, RecursiveLeast Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
2740 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method

Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra

Abstract:

This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.

Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
2739 Low-Cost Eco-Friendly Building Material: A Case Study in Ethiopia

Authors: W. Z. Taffese

Abstract:

This work presents a low-cost and eco-friendly building material named Agrostone panel. Africa-s urban population is growing at an annual rate of 2.8% and 62% of its population will live in urban areas by 2050. As a consequence, many of the least urbanized and least developed African countries- will face serious challenges in providing affordable housing to the urban dwellers. Since the cost of building materials accounts for the largest proportion of the overall construction cost, innovating low-cost building material is vital. Agrostone panel is used in housing projects in Ethiopia. It uses raw materials of agricultural/industrial wastes and/or natural minerals as a filler, magnesium-based chemicals as a binder and fiberglass as reinforcement. Agrostone panel reduces the cost of wall construction by 50% compared with the conventional building materials. The pros and cons of Agrostone panel as well as the use of other waste materials as a raw material to make the panel more sustainable, low-cost and better properties are discussed.

Keywords: Agrostone Panel, Low-cost and sustainable Building Materials, Agro-waste for construction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9807
2738 The Effect of Enzymatic Keratin Hydrolyzate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition

Authors: Y.-H Tshela Ntumba, A. Przepiórkowska, M. Prochoń

Abstract:

Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching.

The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats.

Keywords: Agricultural mat, biodecomposition, biodegradation, carboxylated styrene-butadiene latex, cellulosic-elastomeric material, keratin hydrolyzate, mulching, protein hydrolyzate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
2737 Signals from the Rocks

Authors: Ernst D. Schmitter

Abstract:

There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.

Keywords: Earthquakes, ELF, EM signals from material under load, signal propagation in conductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
2736 Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER

Authors: Yu-Shuai Chen , Chien-Ching Chiu , Chung-Hsin Huang, Chien-Hung Chen

Abstract:

The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.

Keywords: UWB, multipath, outage probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2735 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Catalytic combustion of methane is imperative due to stability of methane at low temperature. Methane (CH4), therefore, remains unconverted in vehicle exhausts thereby causing greenhouse gas GHG emission problem. In this study, heterogeneous catalysts of palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3) supports were prepared by incipient wetness impregnation and then subsequently tested for catalytic combustion of CH4. Support-porous heterogeneous catalytic combustion (HCC) material were selected based on factors such as surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. Sustainable and renewable support-material of bio-mass char derived from palm shell waste material was compared with those from the conventional support-porous materials. Kinetic rate of reaction was determined for combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc). Material characterization was done using TGA, SEM, and BET surface area. The performance test was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. The methane porous-HCC conversion was carried out using online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature was 2wt% Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt% Pd/Bc. Hence agro waste material can successfully be utilized as an inexpensive catalyst support material for enhanced CH4 catalytic combustion.

Keywords: Catalytic-combustion, Environmental, Support-bio-char material, Sustainable, Renewable material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6040
2734 Investigation of Dam Safety Making Use of Multichannel Analysis of Surface Wave (MASW) Seismic Method

Authors: Collins C. Chiemeke

Abstract:

Multichannel Analysis of Surface Wave (MASW) seismic method is widely used in geotechnical engineering for the measurement of shear wave velocity and evaluation of material property. This method was recently conducted at a Dam site located in Zaria, within the basement complex of northern Nigeria. The aim of this experiment was to make use of the MASW method in evaluating the strength of material properties of a section of the Dam embankment, which is vital to ascertain the safety of the Dam. The result revealed that, the material embankment showed general increase of shear wave velocity with depth. The range of shear wave velocities and the determined Poisson’s ratio falls within the normal range of consolidated rock material, indicating the Dam embankment is still consolidated. The range of shear modulus determined, also shows that the Dam embankment is rigid enough to withstand the shear stress imposed by the impounded water.

Keywords: Dam, MASW, Multichannel Analysis of Surface Wave, Seismic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
2733 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall.  In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall.  This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
2732 Adsorption Kinetics of Alcohols over MCM-41 Materials

Authors: Farouq Twaiq, Mustafa Nasser, Siham Al-Hajri, Mansoor Al-Hasani

Abstract:

Adsorption of methanol and ethanol over mesoporous siliceous material are studied in the current paper. The pure mesoporous silica is prepared using tetraethylorthosilicate (TEOS) as silica source and dodecylamine as template at low pH. The prepared material was characterized using nitrogen adsorption,nX-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption kinetics of methanol and ethanol from aqueous solution were studied over the prepared mesoporous silica material. The percent removal of alcohol was calculated per unit mass of adsorbent used. The 1st order model is found to be in agreement with both adsorbates while the 2nd order model fit the adsorption of methanol only.

Keywords: Adsorption, Kinetics, Mesoprous silica, Methanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
2731 Finite Element Dynamic Analysis of Composite Structure Cracks

Authors: Omid A. Zargar

Abstract:

Material damages dynamic analysis is difficult to deal with different material geometry and mechanism. In addition, it is difficult to measure the dynamic behavior of cracks, debond and delamination inside the material. Different simulation methods are developed in recent years for different physical features of mechanical systems like vibration and acoustic. Nonlinear fractures are analyzed and identified for different locations in this paper. The main idea of this work is to perform dynamic analysis on different types of materials (from normal homogeneous material to complex composite laminates). Technical factors like cracks, voids, interfaces and the damages’ locations are evaluated. In this project the modal analysis is performed on different types of materials. The results could be helpful in finding modal frequencies, natural frequencies, Time domain and fast Fourier transform (FFT) in industrial applications.

Keywords: Finite element method, dynamic analysis, vibration and acoustic, composite, crack, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
2730 A Review on Concrete Structures in Fire

Authors: S. Iffat, B. Bose

Abstract:

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Keywords: Concrete, fire, spalling, temperature, compressive strength, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
2729 Structural Basis of Resistance of Helicobacterpylori DnaK to Antimicrobial Peptide Pyrrhocoricin

Authors: Musammat F. Nahar, Anna Roujeinikova

Abstract:

Bacterial molecular chaperone DnaK plays an essential role in protein folding, stress response and transmembrane targeting of proteins. DnaKs from many bacterial species, including Escherichia coli, Salmonella typhimurium and Haemophilus infleunzae are the molecular targets for the insect-derived antimicrobial peptide pyrrhocoricin. Pyrrhocoricin-like peptides bind in the substrate recognition tunnel. Despite the high degree of crossspecies sequence conservation in the substrate-binding tunnel, some bacteria are not sensitive to pyrrhocoricin. This work addresses the molecular mechanism of resistance of Helicobacter pylori DnaK to pyrrhocoricin. Homology modelling, structural and sequence analysis identify a single aminoacid substitution at the interface between the lid and the β-sandwich subdomains of the DnaK substrate-binding domain as the major determinant for its resistance.

Keywords: Helicobacter pylori, molecular chaperone DnaK, pyrrhocoricin, structural biology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2728 Bendability Analysis for Bending of C-Mn Steel Plates on Heavy Duty 3-Roller Bending Machine

Authors: Himanshu V. Gajjar, Anish H. Gandhi, Tanvir A Jafri, Harit K. Raval

Abstract:

Bendability is constrained by maximum top roller load imparting capacity of the machine. Maximum load is encountered during the edge pre-bending stage of roller bending. Capacity of 3-roller plate bending machine is specified by maximum thickness and minimum shell diameter combinations that can be pre-bend for given plate material of maximum width. Commercially available plate width or width of the plate that can be accommodated on machine decides the maximum rolling width. Original equipment manufacturers (OEM) provide the machine capacity chart based on reference material considering perfectly plastic material model. Reported work shows the bendability analysis of heavy duty 3-roller plate bending machine. The input variables for the industry are plate thickness, shell diameter and material property parameters, as it is fixed by the design. Analytical models of equivalent thickness, equivalent width and maximum width based on power law material model were derived to study the bendability. Equation of maximum width provides bendability for designed configuration i.e. material property, shell diameter and thickness combinations within the machine limitations. Equivalent thicknesses based on perfectly plastic and power law material model were compared for four different materials grades of C-Mn steel in order to predict the bend-ability. Effect of top roller offset on the bendability at maximum top roller load imparting capacity is reported.

Keywords: 3-Roller bending, Bendability, Equivalent thickness, Equivalent width, Maximum width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4607
2727 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams

Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim

Abstract:

When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.

Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
2726 When Construction Material Traders Goes Electronic: Analysis of SMEs in Malaysian Construction Industry

Authors: Dzul Fahmi Nordin, Rosmini Omar

Abstract:

This paper analyzed the perception of e-commerce application services by construction material traders in Malaysia. Five attributes were tested: usability, reputation, trust, privacy and familiarity. Study methodology consists of survey questionnaire and statistical analysis that includes reliability analysis, factor analysis, ANOVA and regression analysis. The respondents were construction material traders, including hardware stores in Klang Valley, Kuala Lumpur. Findings support that usability and familiarity with e-commerce services in Malaysia have insignificant influence on the acceptance of e-commerce application. However, reputation, trust and privacy attributes have significant influence on the choice of e-commerce acceptance by construction material traders. E-commerce applications studied included customer database, e-selling, emarketing, e-payment, e-buying and online advertising. Assumptions are made that traders have basic knowledge and exposure to ICT services. i.e. internet service and computers. Study concludes that reputation, privacy and trust are the three website attributes that influence the acceptance of e-commerce by construction material traders.

Keywords: Electronic Commerce (e-Commerce), Information and Communications Technology (ICT), Small Medium Enterprise (SME)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
2725 An Overview of Construction and Demolition Waste as Coarse Aggregate in Concrete

Authors: S. R. Shamili, J. Karthikeyan

Abstract:

Fast development of the total populace and far and wide urbanization has surprisingly expanded the advancement of the construction industry. As a result of these activities, old structures are being demolished to make new buildings. Due to these large-scale demolitions, a huge amount of debris is generated all over the world, which results in a landfill. The use of construction and demolition waste as landfill causes groundwater contamination, which is hazardous. Using construction and demolition waste as aggregate can reduce the use of natural aggregates and the problem of mining. The objective of this study is to provide a detailed overview on how the construction and demolition waste material has been used as aggregate in structural concrete. In this study, the preparation, classification, and composition of construction and demolition wastes are also discussed.

Keywords: Aggregate, construction and demolition waste, landfill, large scale demolition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
2724 Dynamic Response of Fixed-base Core-tube and Base-isolated Frame Structure Subjected to Strong Earthquake Motions

Authors: Z.D. Yang, E.S.S. Lam

Abstract:

Considering the merits and limitations of energy dissipation system, seismic isolation system and suspension system, a new earthquake resistant system is proposed and is demonstrated numerically through a frame-core structure. Base isolators and story isolators are installed in the proposed system. The former “isolates" the frame from the foundation and the latter “separates" the frame from the center core. Equations of motion are formulated to study the response of the proposed structural system to strong earthquake motion. As compared with the fixed-base building system, the proposed structural system shows substantial reduction on structural response.

Keywords: Base Isolator, Core-tube, Isolated frame, Seismic Mitigation, Story Isolator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2723 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: Construction materials, drop weight impact, impact testing, recycled glass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2722 An Economic Evaluation of Subjective Well-Being Derived from Sport Participation

Authors: Huei-Fu Lu

Abstract:

This study links up the theories of social psychology, economics and sport management to assess the impact of sport participation on subjective well-being (SWB) and use a simple statistic method to estimate the relative monetary value that sport participation derives SWB for Taiwan-s college students. By constructing proper measurements on sport participation and SWB respectively, a structural equation model (SEM) is developed to perform a confirmatory factory analysis, and the causal relationship between sport participation and SWB as well as the effect of the demographic variables on these two concepts are also discussed.

Keywords: Demographics, Economic value, Sport participation, Structural equation modeling (SEM), Subjective well-being.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2721 Use of Benin Laterites for the Mix Design of Structural Concrete

Authors: Yémalin D. Agossou, André Lecomte, Rémi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil

Abstract:

This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays, and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is therefore possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.

Keywords: Laterites, aggregates, concretes, mix design, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
2720 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behaviour of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behaviour in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. Parametric studies to explore the influence of variation in i) axial restraint stiffness, ii) steel grades, iii) shape and size of web openings, and iv) load level were described. Hence, the structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behaviour of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: Axial restraint, catenary action, cellular beam, fire, numerical modelling, stainless steel, transit temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72
2719 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences

Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato

Abstract:

In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.

Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2718 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: Nano-enhanced phase change material, phase change material, nanoparticles, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
2717 Development of a New Method for T-joint Specimens Testing under Shear Loading

Authors: R. Doubrava, R. Růžek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fibre reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, Finite Element analysis, methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660