Use of Benin Laterites for the Mix Design of Structural Concrete
Authors: Yémalin D. Agossou, André Lecomte, Rémi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil
Abstract:
This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays, and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is therefore possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.
Keywords: Laterites, aggregates, concretes, mix design, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420References:
[1] A.K. Kasthurba, M. Santhanam, M.S. Mathews, Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India – Part 1: Field studies and profile characterisation, Constr. Build. Mater. 21 (2007) 73–82. https://doi.org/10.1016/j.conbuildmat.2005.07.006
[2] F.H. Buchanan, A Journey from Madras Through the Countries of Mysore, Canara, and Malabar, Performed Under the Orders of the Most Noble the Marquis Wellesley, Governor General of India..., Cadell, 1807.
[3] I. Youssouf, M. Lawani, Les sols beninois : classification dans la Base de référence mondiale, (2002) 29–50 (in French). http://agris.fao.org/agris-search/search.do?recordID = XF2016060395 (accessed March 2, 2020).
[4] G. Mohamad, P.B. Lourenço, H.R. Roman, Mechanics of hollow concrete block masonry prisms under compression: Review and prospects, Cem. Concr. Compos. 29 (2007) 181–192. https://doi.org/10.1016/j.cemconcomp.2006.11.003.
[5] A. Kasthurba, V. Reddy, Use of Laterite as a Sustainable Building Material in Developing Countries, Int. J. Earth Sci. Eng. 07 (2015) 1251–1258.
[6] A. Lawane, A. Pantet, R. Vinai, J.H. Thomassin, Etude géologique et géomécanique des latérites de Dano (Burkina Faso) pour une utilisation dans l’habitat, XXIXe Rencontres Universitaires de Génie Civil. Tlemcen, 29 au 31 Mai 2011. (2011) 206–215 (in French).
[7] R.V. Ganse, Propriétés et applications des latérites au Congo beige, (n.d.) 52 (in French).
[8] M. Laquerbe, I. Cisse, G. Ahouansou, Pour une utilisation rationnelle des graveleux latéritiques et des sables de dunes comme granulats à béton Application au cas du Sénégal, Mater. Struct. 28 (1995) 604–610 (in French).
[9] M. Ndiaye, Contribution à l’étude de sols latéritiques du Sénégal et du Brésil, PhD Thesis, Paris Est, 2013 (in French).
[10] A. Lawane Gana, Caractèrisation des matériaux latéritiques indurés pour une meilleure utilisation dans l’habitat en Afrique, PhD Thesis, Le Havre, 2014 (in French).
[11] M.S. Issiakou, Caractérisation et valorisation des matérieux latéritiques utilisés en construction routière au Niger, (n.d.) 350 (in French).
[12] H.B. Takala, Caractérisation géotechnique et évaluation en construction routière des latérites de Batoufam, ouest Cameroun, (n.d.) 16 (in French)
[13] N.K. Raju, R. Ramakrishnan, Properties of laterite aggregate concrete, Mater. Constr. 5 (1972) 307–314.
[14] L.A. Balogun, D. Adepegba, Effect of varying sand content in laterized concrete, Int. J. Cem. Compos. Lightweight Concr. 4 (1982) 235–240.
[15] F. Falade, Influence of water/cement ratios and mix proportions on workability and characteristic strength of concrete containing laterite fine aggregate, Build. Environ. 29 (1994) 237–240.
[16] J.A. Osunade, The influence of coarse aggregate and reinforcement on the anchorage bond strength of laterized concrete, Build. Environ. 37 (2002) 727–732.
[17] J.O. Ukpata, M.E. Ephraim, Flexural and tensile strength properties of concrete using lateritic sand and quarry dust as fine aggregate, ARPN J. Eng. Appl. Sci. 7 (2012) 324–331.
[18] N.W. Kamaruzaman, K. Muthusamy, Engineering Properties Of Concrete With Laterite Aggregate As Partial Coarse Aggregate Replacement, Int. J. Civ. Eng. Geo-Environ. 3 (2012) 47–50.
[19] M. Ephraim, E. Adoga, E. Rowland-Lato, Strength of laterite rock concrete, Am. J. Civ. Eng. Archit. 4 (2016) 54–61.
[20] NF P 94-056, Soil: investigation and testing - Granulometric analysis - Dry sieving method after washing (1996), Afnor, La-Plaine-Saint-Denis.
[21] NF P 94-057, Soils investigation and testing - Granulometric analysis - Hydrometer method, Afnor, La-Plaine-Saint-Denis
[22] EN 1097-7, Tests for mechanical and physical properties of aggregates - Part 7: Determination of the particle density of filler - Pyknometer method, Afnor, La-Plaine-Saint-Denis
[23] NF EN 1097-6/A1, Tests for mechanical and physical properties of aggregates, - Part 6: Determination of particle density and water absorption, Afnor, La-Plaine-Saint-Denis
[24] F. de Larrard, Concrete Mixture-Proportioning: a scientific approach, Modern Concrete Technology series No. 9, A. Bentur and S. Mindness editors, E & FN SPON (1999), 420 p., ISBN 0-419-23500-0
[25] NF EN 1097-2, Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation, Afnor, La-Plaine-Saint-Denis
[26] NF EN 933-8+A1, Tests for geometrical properties of aggregates - Part 8: Assessment of fines — Sand equivalent test, Afnor, La-Plaine-Saint-Denis
[27] NF P94-068, Soils: Investigation and testing — Measuring of the methylene blue adsorption capacity of a rocky soil — Determination of the methylene blue of a soil by means of the stain test, Afnor, La-Plaine-Saint-Denis
[28] C. Hendrix, W. Xing, Suitable separation treatment of stony components in construction and demolition waste (CDW), Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, RILEM Publication SARL, 166-172 (2004)
[29] EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements, Afnor, La-Plaine-Saint-Denis
[30] G. Dreux, Nouveau guide Du Beton-3e edition, Collect. UTI-ITBTP. (1981).
[31] NF EN 12390-3, Testing hardened concrete - Part 3: Compressive strength of test specimens, La-Plaine-Saint-Denis
[32] B. EN, 12390-13, Test. Hardened Concr.-Part. 13 (2013).
[33] XP P 18-545 - Aggregates- Defining elements, conformity and coding, (2011), Afnor, La-Plaine-Saint-Denis
[34] F. De Larrard, T. Sedran, Mixture-proportioning of high-performance concrete, Cem. Concr. Res. 32 (2002) 1699–1704.