The Effect of Enzymatic Keratin Hydrolyzate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
The Effect of Enzymatic Keratin Hydrolyzate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition

Authors: Y.-H Tshela Ntumba, A. Przepiórkowska, M. Prochoń

Abstract:

Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching.

The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats.

Keywords: Agricultural mat, biodecomposition, biodegradation, carboxylated styrene-butadiene latex, cellulosic-elastomeric material, keratin hydrolyzate, mulching, protein hydrolyzate.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093402

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227

References:


[1] D. Briassoulis, "Mechanical behaviour of biodegradable agricultural films under real field conditions. Polymer Degradation and Stability, 2007, 92, 1115 – 1132.
[2] Kyrikou I. and Briassoulis D. Biodegradation of Agricultural Plastic Films – Α critical review. J. of Polymers and the Environment, 2007, 15 (2), 125-150.
[3] Majdiuk E. Materiały tworzywowe przyjazne dla środowiska. Przetwórstwo Tworzyw, 2002, 4 (90), 105-114.
[4] Jong L. Reinforcement Effect of Biomass Carbon and Protein in Elastic Biocomposites. Polymer Composites, 2013, 34 (5), 697–706.
[5] Prochoń M., Przepiórkowska A., Tshela Ntumba Y.-H. The Effect of Waste Fodder Potato Proteins on the Mechanical Properties of Carboxylated Acrylonitrile-Butadiene Rubber. ISRN Polymer Science, 2012, (2012), 5 pages
[6] Monteiro S. N., Calado V., Rodriguez R. J. S., Margem F. M. Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Materials Science & Engineering A, 2012, 557, 17–28.
[7] Prochon M., Janowska G., Przepiorkowska A., Kucharska-Jastrzabek A. Thermal properties and combustibility of elastomer–protein composites. J. of Thermal Analysis and Calorimetry, 2012, 109 (3), 1563-1570
[8] Prochoń M. and Przepiórkowska A. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR. Journal of Chemistry, 2013, (2013), 8 pages
[9] Schettini E., Sartore L., Barbaglio M., Vox G. Hydrolyzed Protein Based Materials for Biodegradable Spray Mulching Coatings. Acta horticulturae 01/2012, 952, 359-366.
[10] Immirzi B., Santagata G., Vox G., Schettini E. Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosystems Engineering, 2009, 102 (4), 461–472
[11] Kasirajan S. and Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review. Agron. Sustain. Dev., 2012, 32, 501–529
[12] Tshela Ntumba Y.-H., Przepiórkowska A., Prochoń M.. Próby wykorzystania odpadowej sierści bydlęcej do uzyskania biorozkładalnych materiałów elastomerowych. Przetwórstwo Tworzyw, 2011, 5 (143), 405 - 408.
[13] Shubhra Q.T.H., Alam A.K.M.M., Khan M. A. , Saha M., Saha D., Gafur M.A. Study on the mechanical properties, environmental effect, degradation characteristics and ionizing radiation effect on silk reinforced polypropylene/natural rubber composites. Composites, Part A, 2010, 41, 1587–1596
[14] Tshela Ntumba Y.-H., Prochoń M., Przepiórkowska A. Porównanie wpływu rodzaju hydrolizatu keratyny na włąsciwości mechaniczne karboksylowanego lateksu butadienowo-styrenowego. Przetwórstwo tworzyw, 2012, 6 (150), 687 – 691, 2012
[15] Balakrishnan B., Prasad B., Rai A.K. In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods. Biodegradation, 2011, 22, 287-295
[16] Guo H., Kouzuma Y., Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chemistry, 2009, 113, 238-245
[17] Kaniszewski S., Dyśko J., Babik J. 2009. Wpływ nawadniania i fertygacji kroplowej azotem na plonowanie warzyw korzeniowych. Infrastruktura i Ekologia Terenów Wiejskich. Nr 2009/ 03