Search results for: Vertical dipole antenna
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 705

Search results for: Vertical dipole antenna

465 Design an Electrical Nose with ZnO Nanowire Arrays

Authors: Amin Nekoubin, Abdolamir Nekoubin

Abstract:

Vertical ZnO nanowire array films were synthesized based on aqueous method for sensing applications. ZnO nanowires were investigated structurally using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The gas-sensing properties of ZnO nanowires array films are studied. It is found that the ZnO nanowires array film sensor exhibits excellent sensing properties towards O2 and CO2 at 100 °C with the response time shorter than 5 s. High surface area / volume ratio of vertical ZnO nanowire and high mobility accounts for the fast response and recovery. The sensor response was measured in the range from 100 to 500 ppm O2 and CO2 in this study.

Keywords: Gas sensor, semiconductor, ZnO, Nanowire array

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
464 Experimental Study on Gas-Viscous Liquid Mixture Flow Regimes and Transitions Criteria in Vertical Narrow Rectangular Channels

Authors: F. J. Sowiński, M. Dziubiński

Abstract:

In the study the influence of the physical-chemical properties of a liquid, the width of a channel gap and the superficial liquid and gas velocities on the patterns formed during two phase flows in vertical, narrow mini-channels was investigated. The research was performed in the channels of rectangular cross-section and of dimensions: 15 x 0.65 mm and 7.5 x 0.73 mm. The experimental data were compared with the published criteria of the transitions between the patterns of two-phase flows.

Keywords: Two-phase flow, flow regimes, mini-channel, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
463 Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

Authors: A. F. Khadrawi

Abstract:

The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time  on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as  increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as  increases. Also, the slip in the thermal boundary condition increases as  decreases especially the early stage of time.

Keywords: free convection, hyperbolic heat conduction, macroscopic heat conduction models in microchannel, porous media, vertical microchannel, microchannel thermal, hydrodynamic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
462 Evaluation of the Effect of Rotor Solidity on the Performance of a H-Darrieus Turbine Adopting a Blade Element-Momentum Algorithm

Authors: G. Bedon, M. Raciti Castelli, E. Benini

Abstract:

The present study aims to evaluating the effect of rotor solidity - in terms of chord length for a given rotor diameter - on the performances of a small vertical axis Darrieus wind turbine. The proposed work focuses on both power production and rotor power coefficient, considering also the structural constraints deriving from the centrifugal forces due to rotor angular velocity. Also the smoothness of the resulting power curves have been investigated, in order to evaluate the controllability of the corresponding rotor architectures.

Keywords: Vertical axis wind turbine, Darrieus, solidity, Blade Element-Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5968
461 Spanner Barb at Thepchana Waterfall, Khao Nan National Park, Thailand

Authors: S. Sutin, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study investigated morphology of the Spanner Barb (Puntius lateristriga Valenciennes, 1842) and water quality at Thepchana waterfall. This study was conducted at Thepchana Waterfall, Khao Nan National Park from March to May 2007. There were 40 Spanner Barb collected with 20 males and 20 females. Males had an average of 5.57 cm in standard length, 6.62 cm in total length and 5.18 g in total body weight. Females had an average of 7.25 cm in standard length, 8.24 cm in total length and 10.96 g in total body weight. The length (L) – weight (W) relationships for combining sexes, males and females were LogW = -2.137 + 3.355logL, log W = -0.068 + 3.297logL, and log W = -2.068 + 3.297logL, respectively. The Spanner Barb were smaller size fish with a compressed form; terminal mouth; villiform teeth; ctenoid scale; concave tail; general body color yellowish olive, with slight reddish tint to fins; vertical band beginning below dorsal and horizontal stripe from base of tail almost to vertical band. They also had a vertical band midway between the eye and first vertical band. There was a black spot above anal fin. The bladder looked like J-shape. Inside of the bladder was found small insects and insect lava. The body length and the bowels length was 1:1 ratio. The water temperature ranged from 25.00 – 27.00 °C which was appropriate for their habitat characteristics. Acid - alkalinity ranged from 6.65 – 6.90 mg/l. Dissolved oxygen ranged from 4.55 – 4.70 mg/l. Water hardness ranged from 31.00 – 48.00 mg/l. The amount of ammonia was about 0.25 mg/l.

Keywords: Spanner barb, morphology, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
460 MHD Mixed Convection in a Vertical Porous Channel

Authors: B. Fersadou, H. Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: Heat sources, magnetic field, mixed convection, porous channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
459 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability

Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo

Abstract:

Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.

Keywords: Elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
458 Deformation and Crystallization in a 7075-T651 Friction Stir Weld

Authors: C. S. Paglia

Abstract:

The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.

Keywords: AA7075-T651, friction stir welding, deformation, crystallization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
457 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
456 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Authors: Abolfazl Hosseinkhani, Sepehr Sanaye

Abstract:

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
455 Synchronization of 0.1 Hz Oscillations in Heart Rate and Blood Pressure: Application to Treatment of Myocardial Infarction Patients

Authors: M. D. Prokhorov, A. R. Kiselev, A. S. Karavaev, O. M. Posnenkova, V. I. Gridnev, V. I. Ponomarenko

Abstract:

Synchronization between 0.1 Hz oscillations in heart rate and blood pressure is studied and its change during vertical tilt is evaluated in 37 myocardial infarction patients. Two groups of patients are identified with decreased and increased, respectively, synchronization of the studied oscillations as a response to a tilt test. It is shown that assessment of synchronization of 0.1 Hz oscillations as a response to vertical tilt can be used as a guideline for selecting optimal dose of beta-blocker treatment in post-myocardial infarction patients.

Keywords: Cardiovascular system, heart rate variability, synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
454 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: Permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
453 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, multi-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
452 Computational Fluid Dynamics Modeling of Downward Bubbly Flows

Authors: Mahmood Reza Rahimi, Hajir Karimi

Abstract:

Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated and compared against experimental data. CFD results are in good agreement with experimental data.

Keywords: CFD, Bubbly flow, Vertical pipe, Population balance modeling, Gas void fraction, Liquid velocity, Normal turbulent stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
451 The Effects of Whole-Body Vibration Training on Jump Performance in Handball Athletes

Authors: Yen-Ting Wang, Shou-Jing Guo, Hsiu-Kuang Chang, Kenny Wen-Chyuan Chen, Alex J.Y. Lee

Abstract:

This study examined the effects of eight weeks of whole-body vibration training (WBVT) on vertical and decuple jump performance in handball athletes. Sixteen collegiate Level I handball athletes volunteered for this study. They were divided equally as control group and experimental group (EG). During the period of the study, all athletes underwent the same handball specific training, but the EG received additional WBVT (amplitude: 2 mm, frequency: 20 - 40 Hz) three time per week for eight consecutive weeks. The vertical jump performance was evaluated according to the maximum height of squat jump (SJ) and countermovement jump (CMJ). Single factor ANCOVA was used to examine the differences in each parameter between the groups after training with the pretest values as a covariate. The statistic significance was set at p < .05. After 8 weeks WBVT, the EG had significantly improved the maximal height of SJ (40.92 ± 2.96 cm vs. 48.40 ± 4.70 cm, F = 5.14, p < .05) and the maximal height CMJ (47.25 ± 7.48 cm vs. 52.20 ± 6.25 cm, F = 5.31, p < .05). 8 weeks of additional WBVT could improve the vertical and decuple jump performance in handball athletes. Enhanced motor unit synchronization and firing rates, facilitated muscular contraction stretch-shortening cycle, and improved lower extremity neuromuscular coordination could account for these enhancements.

Keywords: Muscle strength, explosive power, squat jump, and countermovement jump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
450 Research on Regional Energy Saving Potential Based on Nonparametric Radial Adjustment and Slack Adjustment

Authors: Donglan Zha, Ning Ding

Abstract:

Taking the provincial capital, labor and energy as inputs, regional GDP as output from 1995 to 2007, the paper quantifies the vertical and lateral energy saving potential by introducing the radial adjustment and slack adjustment of DEA. The results show that by the vertical, the achievement of energy saving in 2007 is better than their respective historical performances. By horizontal, in 2007 it can be found that Tianjin, Liaoning, Shanghai and Yunnan do better in energy saving than other provinces. In national wide, the higher of energy efficiency, the larger of per capita GDP and the proportion of the tertiary industry in the national economy, the more open to the outside, the lower the energy saving potential demonstrates, while the energy endowment has negative effect on energy saving potential.

Keywords: radial adjustment; slack adjustment; regional disparity; energy saving potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
449 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Authors: Tapano Kumar Hotta, S P Venkateshan

Abstract:

Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.

Keywords: Discrete heat source, mixed convection, natural convection, vertical channel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
448 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: Vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
447 Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior

Authors: Panagiotis Lemonakis, Theodoros Αlimonakis, George Kaliabetsos, Nikos Eliou

Abstract:

It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.

Keywords: Drainage, motorcycle safety, superelevation, transition curves, vertical grade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
446 Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

Authors: M. Raciti Castelli, S. Mogno, S. Giacometti, E. Benini

Abstract:

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

Keywords: Boundary layer wind tunnel, flow around buildings, atmospheric flow field, vertical-axis wind turbine (VAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
445 Structural Behavior of Incomplete Box Girder Bridges Subjected to Unpredicted Loads

Authors: E. H. N. Gashti, J. Razzaghi, K. Kujala

Abstract:

In general, codes and regulations consider seismic loads only for completed structures of the bridges while, evaluation of incomplete structure of bridges, especially those constructed by free cantilever method, under these loads is also of great importance. Hence, this research tried to study the behavior of incomplete structure of common bridge type (box girder bridge), in construction phase under vertical seismic loads. Subsequently, the paper provided suitable guidelines and solutions to resist this destructive phenomenon. Research results proved that use of preventive methods can significantly reduce the stresses resulted from vertical seismic loads in box cross sections to an acceptable range recommended by design codes.

Keywords: Box girder bridges, Prestress loads, Free cantilever method, Seismic loads, Construction phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
444 Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

Authors: Hassan A. Alshahrani, Mehdi H. Hojjati

Abstract:

In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.

Keywords: Bending stiffness, out of autoclave prepreg, forming process, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
443 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

Authors: Maria Neagu

Abstract:

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

Keywords: Finite difference method, natural convection, porous medium, scale analysis, thermal stratification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
442 Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation

Authors: Siddeeq Y. Ameen, Mohammed K. Yousif

Abstract:

Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On the decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively.

In the proposed system, the transmission time has been divided into two phases to be used by the decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.

Keywords: Cooperative systems, decode and forward, interference cancellation, virtual MIMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3724
441 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: Boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
440 Comparison between Lift and Drag-Driven VAWT Concepts on Low-Wind Site AEO

Authors: Marco Raciti Castelli, Ernesto Benini

Abstract:

This work presents a comparison between the Annual Energy Output (AEO) of two commercial vertical-axis wind turbines (VAWTs) for a low-wind urban site: both a drag-driven and a liftdriven concepts are examined in order to be installed on top of the new Via dei Giustinelli building, Trieste (Italy). The power-curves, taken from the product specification sheets, have been matched to the wind characteristics of the selected installation site. The influence of rotor swept area and rated power on the performance of the two proposed wind turbines have been examined in detail, achieving a correlation between rotor swept area, electrical generator size and wind distribution, to be used as a guideline for the calculation of the AEO.

Keywords: Annual Energy Output, micro-generationtechnology, urban environment, Vertical-Axis Wind Turbine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6028
439 LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel

Abstract:

We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle-s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers.

Keywords: UAV, VTOL, dynamic model, stabilization, LQR, SMC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
438 Vibration Signals of Small Vertical Axis Wind Turbines

Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly

Abstract:

In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.

Keywords: Savonius wind turbine, number of blades, vibration amplitude, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
437 Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source

Authors: Tusharkanta Das, Tumbanath Samantara, Sukanta Kumar Sahoo

Abstract:

Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.

Keywords: Heat transfer, radiation, MHD, free convection, porous medium, suction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
436 Determination of Surface Deformations with Global Navigation Satellite System Time Series

Authors: I. Tiryakioglu, M. A. Ugur, C. Ozkaymak

Abstract:

The development of Global Navigation Satellite System (GNSS) technology has led to increasingly widely and successful applications of GNSS surveys for monitoring crustal movements. Instead of the multi-period GNSS solutions, this study utilizes GNSS time series that are required to more precisely determine the vertical deformations in the study area. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create coordinate time series. With the time series analyses, the GNSS stations’ behaviour models (linear, periodical, etc.), the causes of these behaviours, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations show approximately 50-90 mm/yr vertical movement.

Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814