Search results for: Nonlinear advection-diffusion equation.
1745 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics
Authors: Mahdi Nouri
Abstract:
In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.
Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061744 New Delay-dependent Stability Conditions for Neutral Systems with Nonlinear Perturbations
Authors: Lianglin Xiong, Xiuyong Ding, Shouming Zhong
Abstract:
In this paper, the problem of asymptotical stability of neutral systems with nonlinear perturbations is investigated. Based on a class of novel augment Lyapunov functionals which contain freeweighting matrices, some new delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs) by using new inequality analysis technique. Numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.
Keywords: Asymptotical stability, neutral system, nonlinear perturbation, delay-dependent, linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15211743 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14531742 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20901741 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu
Abstract:
In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.
Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11611740 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751739 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751738 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10411737 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems
Authors: N. Kaewpraek, W. Assawinchaichote
Abstract:
This paper considers an H∞ TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an H∞ TS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H∞ performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421736 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes
Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail
Abstract:
The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.Keywords: PID, LQR, Two-wheels balancing robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52811735 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421734 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two dimensional Helmholtz equation. The formulation is based on the nine-point fourth order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.
Keywords: Explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20811733 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials
Authors: N. N. Omehe
Abstract:
CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω) from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.
Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401732 A Review in Advanced Digital Signal Processing Systems
Authors: Roza Dastres, Mohsen Soori
Abstract:
Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10381731 The Dividend Payments for General Claim Size Distributions under Interest Rate
Authors: Li-Li Li, Jinghai Feng, Lixin Song
Abstract:
This paper evaluates the dividend payments for general claim size distributions in the presence of a dividend barrier. The surplus of a company is modeled using the classical risk process perturbed by diffusion, and in addition, it is assumed to accrue interest at a constant rate. After presenting the integro-differential equation with initial conditions that dividend payments satisfies, the paper derives a useful expression of the dividend payments by employing the theory of Volterra equation. Furthermore, the optimal value of dividend barrier is found. Finally, numerical examples illustrate the optimality of optimal dividend barrier and the effects of parameters on dividend payments.Keywords: Dividend payout, Integro-differential equation, Jumpdiffusion model, Volterra equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001730 Perturbation Based Modelling of Differential Amplifier Circuit
Authors: Rahul Bansal, Sudipta Majumdar
Abstract:
This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.Keywords: Differential amplifier, perturbation method, Taylor series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10171729 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: Collapse capacity, fragility analysis, spectral shape effects, IDA method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17941728 Signal and Harmonic Analysis of a Compressor Blade for Identification of the Nonlinear Frequency Vibration
Authors: Farhad Asadi, Gholamhasan Payganeh
Abstract:
High-speed turbomachine can experience significant centrifugal and gas bending loads. As a result, the compressor blades must be able to resist high-frequency oscillations due to surge or stall condition in flow field dynamics. In this paper, vibration characteristics of the 6th stage blade compressor have been examined in detail with, using 3-D finite element (FE) methods. The primary aim of this article is to gain an understanding of nonlinear vibration induced in the blade against different loading conditions. The results indicate the nonlinear behavior of the blade as a result of the amplitude of resonances or material properties. Since one of the leading causes of turbine blade failure is high cycle fatigue, simulations were started by specifying the stress distribution in the blade due to the centrifugal rotation. Next, resonant frequencies and critical speeds of the blade were defined by modal analysis. Finally, the harmonic analysis was simulated on the blades.
Keywords: Nonlinear vibration, modal analysis, resonance, frequency response, compressor blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6141727 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling
Authors: A. Puras Trueba, J. R. Llata García
Abstract:
A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23281726 Mathematical Modelling of Transport Phenomena in Radioactive Waste-Cement-Bentonite Matrix
Authors: Ilija Plecas, Uranija Kozmidis-Luburic, Radojica Pesic
Abstract:
The leaching rate of 137Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a firstorder equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.
Keywords: bentonite, cement , radioactive waste, composite, disposal, diffusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22861725 The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology
Authors: Hassan Saberi-Nik, Mahin Golchaman
Abstract:
This paper applies the homotopy analysis method method to a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. Comparison of the approximate solution with the exact one reveals that the method is very effective.
Keywords: Homotopy analysis method, differential-difference, nanotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781724 Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load
Authors: S.Ali Al-Mawsawi
Abstract:
In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.Keywords: UPFC, PWM, Nonlinear load, Multi-Machines system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231723 Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method
Authors: Kang-Gyu Park, Sun-Jong Park, Hong Jae Yim, Hyo-Gyung Kwak
Abstract:
This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic nonlinearity parameter was obtained by amplitudedependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic nonlinearity parameter and residual strength was proposed from each test result.
Keywords: Fire damaged concrete, nonlinear resonance vibration method, nonlinearity parameter, post-fire-curing, splitting tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21191722 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation
Authors: Sun Lim, Il-Kyun Jung
Abstract:
This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261721 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021720 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning
Authors: Azita Tajaddini, Ramleh Shamsi
Abstract:
In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8741719 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers
Authors: M. Mohebbi, K. Shakeri
Abstract:
In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541718 On the Existence and Global Attractivity of Solutions of a Functional Integral Equation
Authors: Asadollah Aghajani, Yaghoub Jalilian
Abstract:
Using the concept of measure of noncompactness, we present some results concerning the existence, uniform local attractivity and global attractivity of solutions for a functional integral equation. Our results improve and extend some previous known results and based on weaker conditions. Some examples which show that our results are applicable when the previous results are inapplicable are also included.
Keywords: Functional integral equation, fixed-point, measure of noncompactness, attractive solution, asymptotic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12521717 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature
Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard
Abstract:
The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.
Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331716 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos
Abstract:
A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544