Search results for: Experimental colisepticemia
822 Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections
Authors: Paola Pannuzzo, Tak-Ming Chan
Abstract:
In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.
Keywords: Hot-finished steel, hollow sections, cyclic tests, bending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575821 Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall
Authors: C. J. W. Habets, D. J. Peters, J. G. de Gijt, A. V. Metrikine, S. N. Jonkman
Abstract:
Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-displacement and finite element analysis are employed, calibrated with an experimental reference case that considers a typical anchored sheet pile wall. A reduction factor that accounts for deformation behaviour is determined for pseudo-static analysis. A model to apply traditional permanent displacement analysis on anchored sheet pile walls is proposed. Dynamic analysis is successfully carried out. From the research it is concluded that PBD evaluation can effectively be used for seismic analysis and design of this type of structure.
Keywords: Anchored sheet pile quay wall, simplified dynamic analysis, performance-based design, pseudo-static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365820 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.
Keywords: Energy production, meteorological data, irradiance decomposition, solar photovoltaic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766819 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations
Authors: M. Mazraehli, F. Mehrabani, S. Zare
Abstract:
In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.
Keywords: Distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799818 Effect of Uneven Surface on Magnetic Properties of Fe-Based Amorphous Transformer
Authors: Yeong-Hwa Chang, Chang-Hung Hsu, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan, Chun-Yao Lee; Chia-Shiang Yao, Yan-Lou He
Abstract:
This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.
Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183817 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique
Authors: A. Jabbari, M. Shakeri, A. Nabavi
Abstract:
In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503816 A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform
Authors: Shang-Lin Hsieh, Lung-Yao Hsu, I-Ju Tsai
Abstract:
This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.
Keywords: Color image, copyright protection, discrete wavelet transform, secret sharing, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842815 Aerodynamic Analysis of Dimple Effect on Aircraft Wing
Authors: E. Livya, G. Anitha, P. Valli
Abstract:
The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s and 60m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favors the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.
Keywords: Airfoil, Boundary layer, Dimple effect, Flow separation, Stall reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6148814 Scale Effects on the Wake Airflow of a Heavy Truck
Authors: A. Pérard Lecomte, G. Fokoua, A. Mehel, A. Tanière
Abstract:
Automotive experimental measurements in wind tunnel are often conducted on reduced scale. Depending on the study, different similitude parameters are used by researchers to best reproduce the flow at full scale. In this paper, two parameters are investigated, which are Reynolds number and upstream velocity when dealing with airflow of typical urban speed range, below 15 m.s-1. Their impact on flow structures and aerodynamic drag in the wake of a heavy truck model are explored. To achieve this, Computational Fluid Dynamics (CFD) simulations have been conducted with the aim of modeling the wake airflow of full- and reduced-scaled heavy trucks (1/4 and 1/28). The Reynolds Average Navier-Stokes (RANS) approach combined to the Reynolds Stress Model (RSM) as the turbulence model closure was used. Both drag coefficients and upstream velocity profiles (flow topology) were found to be close one another for the three investigated scales, when the dynamical similitude Reynolds is achieved. Moreover, the difference is weak for the simulations based on the same inlet air velocity. Hence, for the relative low velocity range investigated here, the impact of the scale factor is limited.
Keywords: Aerodynamics, CFD, heavy truck, recirculation area, scale effects, similitude parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500813 Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model
Authors: L. K. Singh, Riktesh Srivastava
Abstract:
How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.Keywords: M/M/1, M/G/1, G/M/1, G/G/1, Gateway Servers, Buffer Estimation, Waiting Time, Queuing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936812 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control
Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi
Abstract:
In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680811 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior
Authors: N. Manoj
Abstract:
The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.
Keywords: Aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281810 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose an aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.
Keywords: Aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506809 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation
Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf
Abstract:
Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.
Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305808 Encryption Efficiency Analysis and Security Evaluation of RC6 Block Cipher for Digital Images
Authors: Hossam El-din H. Ahmed, Hamdy M. Kalash, Osama S. Farag Allah
Abstract:
This paper investigates the encryption efficiency of RC6 block cipher application to digital images, providing a new mathematical measure for encryption efficiency, which we will call the encryption quality instead of visual inspection, The encryption quality of RC6 block cipher is investigated among its several design parameters such as word size, number of rounds, and secret key length and the optimal choices for the best values of such design parameters are given. Also, the security analysis of RC6 block cipher for digital images is investigated from strict cryptographic viewpoint. The security estimations of RC6 block cipher for digital images against brute-force, statistical, and differential attacks are explored. Experiments are made to test the security of RC6 block cipher for digital images against all aforementioned types of attacks. Experiments and results verify and prove that RC6 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC6 block cipher algorithm. So, RC6 block cipher can be considered to be a real-time secure symmetric encryption for digital images.
Keywords: Block cipher, Image encryption, Encryption quality, and Security analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425807 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad
Abstract:
The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265806 Air Conditioning Energy Saving by Rooftop Greenery System in Subtropical Climate in Australia
Authors: M. Anwar, M. G. Rasul, M. M. K. Khan
Abstract:
The benefits of rooftop greenery systems (such as energy savings, reduction of greenhouse gas emission for mitigating climate change and maintaining sustainable development, indoor temperature control etc.) in buildings are well recognized, however there remains very little research conducted for quantifying the benefits in subtropical climates such as in Australia. This study mainly focuses on measuring/determining temperature profile and air conditioning energy savings by implementing rooftop greenery systems in subtropical Central Queensland in Australia. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two standard shipping containers (6m x 2.4m x 2.4m) were converted into small offices, one with green roof and one without. These were used for temperature, humidity and energy consumption data collection. The study found that an energy savings of up to 11.70% and temperature difference of up to 4°C can be achieved in March in subtropical Central Queensland climate in Australia. It is expected that more energy can be saved in peak summer days (December/February) as temperature difference between green roof and non-green roof is higher in December- February.
Keywords: Extensive green roof, Rooftop greenery system, Subtropical climate, Shipping container.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045805 An Images Monitoring System based on Multi-Format Streaming Grid Architecture
Authors: Yi-Haur Shiau, Sun-In Lin, Shi-Wei Lo, Hsiu-Mei Chou, Yi-Hsuan Chen
Abstract:
This paper proposes a novel multi-format stream grid architecture for real-time image monitoring system. The system, based on a three-tier architecture, includes stream receiving unit, stream processor unit, and presentation unit. It is a distributed computing and a loose coupling architecture. The benefit is the amount of required servers can be adjusted depending on the loading of the image monitoring system. The stream receive unit supports multi capture source devices and multi-format stream compress encoder. Stream processor unit includes three modules; they are stream clipping module, image processing module and image management module. Presentation unit can display image data on several different platforms. We verified the proposed grid architecture with an actual test of image monitoring. We used a fast image matching method with the adjustable parameters for different monitoring situations. Background subtraction method is also implemented in the system. Experimental results showed that the proposed architecture is robust, adaptive, and powerful in the image monitoring system.Keywords: Motion detection, grid architecture, image monitoring system, and background subtraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590804 Impact of Out-of-Plane Stiffness of the Diaphragm on Deflection of Wood Light-Frame Shear Walls
Authors: M. M. Bagheri, G. Doudak, M. Gong
Abstract:
The in-plane rigidity of light frame diaphragms has been investigated by researchers due to the importance of this subsystem regarding lateral force distribution between the lateral force resisting system (LFRS). Where research has lacked is in evaluating the impact of out-of-plane raigidity of the diaphragm on the deflection of shear walls. This study aims at investigating the effect of the diaphragm on the behavior of wood light-frame shear walls, in particular its out-of-plane rigidity was simulated by modeling the floors as beam. The out of plane stiffness of the diaphragm was investigated for idealized (infinitely stiff or flexible) as well as “realistic”. The results showed reductions in the shear wall deflection in the magnitude of approximately 80% considering the out of plane rigidity of the diaphragm. It was also concluded that considering conservative estimates of out-of-plane stiffness might lead to a very significant reduction in deflection and that assuming the floor diaphragm to be infinitely rigid out of plan seems to be reasonable. For diaphragms supported on multiple panels, further reduction in the deflection was observed. More work, particularly at the experimental level, is needed to verify the finding obtained in the numerical investigation related to the effect of out of plane diaphragm stiffness.
Keywords: Deflection of light-frame wood shear walls, out-of-plane stiffness of the diaphragm, initial stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782803 Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Authors: Mojtaba Valinataj
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026802 Effect of Uneven Surface on Magnetic Properties of Fe-based Amorphous Power Transformer
Authors: Chang-Hung Hsu, Yeong-Hwa Chang, Chun-Yao Lee, Chia-Shiang Yao, Yan-Lou He, Huei-Lung Chu, Chia-Wen Chang, Wei-Shou Chan
Abstract:
This study reports the preparation of soft magnetic ribbons of Fe-based amorphous alloys using the single-roller melt-spinning technique. Ribbon width varied from 142 mm to 213 mm and, with a thickness of approximately 22 μm ± 2 μm. The microstructure and magnetic properties of the ribbons were characterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and electrical resistivity measurements (ERM). The amorphous material properties dependence of the cooling rate and nozzle pressure have uneven surface in ribbon thicknesses are investigated. Magnetic measurement results indicate that some region of the ribbon exhibits good magnetic properties, higher saturation induction and lower coercivity. However, due to the uneven surface of 213 mm wide ribbon, the magnetic responses are not uniformly distributed. To understand the transformer magnetic performances, this study analyzes the measurements of a three-phase 2 MVA amorphous-cored transformer. Experimental results confirm that the transformer with a ribbon width of 142 mm has better magnetic properties in terms of lower core loss, exciting power, and audible noise.Keywords: Amorphous ribbon, uneven surface, magnetic properties, and rapid solidification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010801 Gas Lift Optimization to Improve Well Performance
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie
Abstract:
Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.
Keywords: Optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6800800 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields
Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-xin Wang
Abstract:
The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.
Keywords: Supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings (FW-H) equations, nozzle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619799 Thermal Load Calculations of Multilayered Walls
Authors: Bashir M. Suleiman
Abstract:
Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal weather conditions, within the Libyan cost region during summer and winter, measured thermal conductivity values were used to implement such seasonal variation of heat flow and the temperature variations through the walls. The experimental measured thermal conductivity values were obtained using the Hot Disk technique. The estimation of the thermal resistance of the wall layers ( R-values) is based on measurements and calculations. The numerical calculations were done using a simplified analytical model that considers two different wall constructions which are characteristics of such houses. According to the obtained results, the R-values were quite low and therefore, several suggestions have been proposed to improve the thermal loading performance that will lead to a reasonable human comfort and reduce energy consumption.Keywords: Thermal loading, multilayered walls, Libyan bricks, thermal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338798 Environmental Study on Urban Disinfection Using an On-site Generation System
Authors: Víctor Martínez del Rey, Kourosh Nasr Esfahani, Amir Masoud Samani Majd
Abstract:
In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.
Keywords: Disinfection, free available chlorine, on-site generation, sodium hypochlorite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502797 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model
Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim
Abstract:
A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.Keywords: Arterial blood pressure, oscillometric method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3337796 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks
Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu
Abstract:
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
Keywords: Pin-fin, heat sinks, simulations, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270795 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills
Authors: J. Y. Jang, Y. W. Lee, C. N. Lin, C. H. Wang
Abstract:
The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.Keywords: 3-D, slab, transient heat conduction, reheating furnace, thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333794 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation
Authors: S. Logeswari, K. Premalatha
Abstract:
Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.
Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303793 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.
Keywords: Artificial Neural Network, Double Stranded RNA, RNA Interference, Short Interfering RNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666