Search results for: decision based artificial neural network.
11208 A Research on DC Voltage Offsets Generated by PWM-Controlled Inverters
Authors: Marios N. Moschakis
Abstract:
The increasing penetration of Distributed Generation and storage connected to the distribution network via PWM converters increases the possibility of a DC-component (offset) in voltage or current flowing into the grid. This occurs when even harmonics are present in the network voltage. DC-components can affect the operation and safety of several grid components. Therefore, an investigation of the way they are produced is important in order to take appropriate measures for their elimination. Further research on DC-components that appear on output voltage of converters is performed for different parameters of PWM technique and characteristics of even harmonics.
Keywords: Asymmetric even harmonics, DC-offsets, distributed generation, electric machine drive systems, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368511207 Cognitive Radio Networks (CRN): Resource Allocation Techniques Based On DNA-inspired Computing
Authors: Santosh Kumar Singh, Krishna Chandra Roy, Vibhakar Pathak
Abstract:
Spectrum is a scarce commodity, and considering the spectrum scarcity faced by the wireless-based service providers led to high congestion levels. Technical inefficiencies from pooled, since all networks share a common pool of channels, exhausting the available channels will force networks to block the services. Researchers found that cognitive radio (CR) technology may resolve the spectrum scarcity. A CR is a self-configuring entity in a wireless networking that senses its environment, tracks changes, and frequently exchanges information with their networks. However, CRN facing challenges and condition become worst while tracks changes i.e. reallocation of another under-utilized channels while primary network user arrives. In this paper, channels or resource reallocation technique based on DNA-inspired computing algorithm for CRN has been proposed.
Keywords: Ad hoc networks, channels reallocation, cognitive radio, DNA local sequence alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178711206 Early Supplier Involvement in New Product Development: A Casting-Network Collaboration Model
Authors: Taneli Eisto, Venlakaisa Hölttä, Katrine Mahlamäki, Janne Kollanus, Marko Nieminen
Abstract:
Early supplier involvement (ESI) benefits new product development projects several ways. Nevertheless, many castuser companies do not know the advantages of ESI and therefore do not utilize it. This paper presents reasons why to utilize ESI in casting industry and how that can be done. Further, this paper presents advantages and challenges related to ESI in casting industry, and introduces a Casting-Network Collaboration Model. The model presents practices for companies to build advantageous collaborative relationships. More detailed, the model describes three levels for company-network relationships in casting industry with different degrees of collaboration, and requirements for operating in each level. In our research, ESI was found to influence, for example, on project time, component cost, and quality. In addition, challenges related to ESI, such as, a lack of mutual trust and unawareness about the advantages were found. Our research approach was a case study including four cases.Keywords: Casting Industry, Collaboration Model, EarlySupplier Involvement, New Product Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847511205 Availability Strategy of Medical Information for Telemedicine Services
Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto
Abstract:
The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.Keywords: Availability, medical information, QoS, strategy, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130511204 A Novel Impulse Detector for Filtering of Highly Corrupted Images
Authors: Umesh Ghanekar
Abstract:
As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.Keywords: Impulse detection, noise removal, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140911203 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.
Keywords: Automotive industry, Industry 4.0, internet of things, IATF 16949:2016, measurement system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99311202 The Influence of Social Network Websites on Level of user Satisfaction
Authors: Pedram Behyar, Maryam Heidari, Zahra Bayat
Abstract:
the purpose of this research is to identify and clarify factors which have positive effect among user satisfaction and their social networking through websites. The examined factors in this research are; innovation, ease of use, trustworthy and customer support which are defined as satisfaction factors. To obtain reliable research approaches and to have better result in this research four hypothesizes used to test. This hypothesis testing has been done by correlation, regression and test of normality by using “SPSS16" also the data which was analyzed by this software. this data was gathered from prepaid questionnaire.Keywords: Customer Satisfaction, Social Network Website
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185811201 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network
Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya
Abstract:
In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.
Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239011200 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554811199 Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Therefore, this paper provides a model which supports the selection of measures by applying multi-objective analysis to find an optimal solution. Additionally, a list of measures is also provided to make the selection easier and more effective without any leakage of measures.
Keywords: Information security risk treatment, Selection of risk measures, Risk acceptance and Multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213411198 Economic Assessment Methodology to Support Decisions for Transport Infrastructure Development
Authors: Dimitrios J. Dimitriou
Abstract:
The decades after the end of the second War provide evidence that infrastructures investments contibute to economic development, on terms of productivity and income growth. In order to force productivity and increase competitiveness the financing of large transport infrastructure projects are on the top of the agenda in strategic planning process. Such a decision may take form some days to some decades and stakeholders as well as decision makers need tools in order to estimate the economic impact on natioanl economy of such an investment. The key question in such decisions is if the effects caused by the new infrastructure could be able to boost economic development on one hand, and create new jobs and activities on the other. This paper deals with the review of estimation of the mega transport infrastructure projects economic effects in economy.
Keywords: Economic impact, transport infrastructure, strategic planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106811197 Design of Ultra Fast Polymer Electro-Optic waveguide Switch for Intelligent Optical Networks
Authors: S.Ponmalar, S.Sundaravadivelu
Abstract:
Traditional optical networks are gradually evolving towards intelligent optical networks due to the need for faster bandwidth provisioning, protection and restoration of the network that can be accomplished with devices like optical switch, add drop multiplexer and cross connects. Since dense wavelength multiplexing forms the physical layer for intelligent optical networking, the roll of high speed all optical switch is important. This paper analyzes such an ultra-high speed polymer electro-optic switch. The performances of the 2x2 optical waveguide switch with rectangular, triangular and trapezoidal grating profiles on various device parameters are analyzed. The simulation result shows that trapezoidal grating is the optimized structure which has the coupling length of 81μm and switching voltage of 11V for the operating wavelength of 1550nm. The switching time for this proposed switch is 0.47 picosecond. This makes the proposed switch to be an important element in the intelligent optical network.
Keywords: Intelligent optical network, optical switch, electrooptic effect, coupled mode theory, waveguide grating structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144611196 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.
Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82611195 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274111194 Genetic-Based Multi Resolution Noisy Color Image Segmentation
Authors: Raghad Jawad Ahmed
Abstract:
Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157611193 Evaluating Content Based Image Retrieval Techniques with the One Million Images CLIC Test Bed
Authors: Pierre-Alain Moëllic, Patrick Hède, Gr egory Grefenstette, Christophe Millet
Abstract:
Pattern recognition and image recognition methods are commonly developed and tested using testbeds, which contain known responses to a query set. Until now, testbeds available for image analysis and content-based image retrieval (CBIR) have been scarce and small-scale. Here we present the one million images CEA-List Image Collection (CLIC) testbed that we have produced, and report on our use of this testbed to evaluate image analysis merging techniques. This testbed will soon be made publicly available through the EU MUSCLE Network of Excellence.
Keywords: CBIR, CLIC, evaluation, image indexing and retrieval, testbed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139111192 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data
Keywords: Rule induction, decision table, missing data, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146311191 Analysis of MAC Protocols with Correlation Receiver for OCDMA Networks - Part II
Authors: Shivaleela E. S., Shrikant S. Tangade
Abstract:
In this paper optical code-division multiple-access (OCDMA) packet network is considered, which offers inherent security in the access networks. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and two-dimensional (2-D) wavelength/time single-pulse-per-row (W/T SPR) codes are analyzed. The main advantage of using 2-D codes instead of onedimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver is considered in the analysis. Using analytical model, we compute and compare packet-success probability for 1-D and 2-D codes in an O-CDMA network and the analysis shows improved performance with 2-D codes as compared to 1-D codes.
Keywords: Optical code-division multiple-access, optical CDMA correlation receiver, wavelength/time optical CDMA codes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139411190 A Computational Model of Minimal Consciousness Functions
Authors: Nabila Charkaoui
Abstract:
Interest in Human Consciousness has been revived in the late 20th century from different scientific disciplines. Consciousness studies involve both its understanding and its application. In this paper, a computational model of the minimum consciousness functions necessary in my point of view for Artificial Intelligence applications is presented with the aim of improving the way computations will be made in the future. In section I, human consciousness is briefly described according to the scope of this paper. In section II, a minimum set of consciousness functions is defined - based on the literature reviewed - to be modelled, and then a computational model of these functions is presented in section III. In section IV, an analysis of the model is carried out to describe its functioning in detail.
Keywords: Consciousness, perception, attention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189111189 Exploration of Autistic Children using Case Based Reasoning System with Cognitive Map
Authors: Ebtehal Alawi Alsaggaf, Shehab A. Gamalel-Din
Abstract:
Exploring an autistic child in Elementary school is a difficult task that must be fully thought out and the teachers should be aware of the many challenges they face raising their child especially the behavioral problems of autistic children. Hence there arises a need for developing Artificial intelligence (AI) Contemporary Techniques to help diagnosis to discover autistic people. In this research, we suggest designing architecture of expert system that combine Cognitive Maps (CM) with Case Based Reasoning technique (CBR) in order to reduce time and costs of traditional diagnosis process for the early detection to discover autistic children. The teacher is supposed to enter child's information for analyzing by CM module. Then, the reasoning processor would translate the output into a case to be solved a current problem by CBR module. We will implement a prototype for the model as a proof of concept using java and MYSQL. This will be provided a new hybrid approach that will achieve new synergies and improve problem solving capabilities in AI. And we will predict that will reduce time, costs, the number of human errors and make expertise available to more people who want who want to serve autistic children and their families.Keywords: Autism, Cognitive Maps (CM), Case Based Reasoning technique (CBR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196111188 Autonomic Sonar Sensor Fault Manager for Mobile Robots
Authors: Martin Doran, Roy Sterritt, George Wilkie
Abstract:
NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.Keywords: Autonomic, self-adaption, self-healing, self-optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100211187 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization
Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke
Abstract:
The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.
Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202611186 Combinatorial Optimisation of Worm Propagationon an Unknown Network
Authors: Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet, Guillaume Roblot
Abstract:
Worm propagation profiles have significantly changed since 2003-2004: sudden world outbreaks like Blaster or Slammer have progressively disappeared and slower but stealthier worms appeared since, most of them for botnets dissemination. Decreased worm virulence results in more difficult detection. In this paper, we describe a stealth worm propagation model which has been extensively simulated and analysed on a huge virtual network. The main features of this model is its ability to infect any Internet-like network in a few seconds, whatever may be its size while greatly limiting the reinfection attempt overhead of already infected hosts. The main simulation results shows that the combinatorial topology of routing may have a huge impact on the worm propagation and thus some servers play a more essential and significant role than others. The real-time capability to identify them may be essential to greatly hinder worm propagation.Keywords: Combinatorial worm, worm spreading, worm virulence, stealth worm, spreading simulation, vertex cover, networktopology, WAST simulator, SuWAST simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220311185 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria
Authors: I. Grigoratos, R. Monteiro
Abstract:
Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.
Keywords: Conversion equation, magnitude of completeness, seismic events, seismic hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81511184 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.
Keywords: Biometrics, deep learning, handwriting, signature forgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11311183 Decision Location and Resource Requirement for Relief Goods Assembly
Authors: Glenda Minguito, Jenith Banluta
Abstract:
One of the critical aspects of humanitarian operations is the distribution of relief goods to an affected community. The common assumption is that relief goods are prepositioned during disasters which are not applicable in developing countries like the Philippines. During disasters, the on-the-ground government agencies and responders have to procure, sort, weigh and pack the relief goods. There is a need to review the relief goods preparation as it seriously affects the delivery of necessary aid for human survival. This study also identifies the ideal location of the assembly hub to minimize the distance to the affected community. This paper reveals that location and resources are dependent on the type of disasters encountered at the local level. The Center-of-Gravity method and Multiple Activity Chart were applied in the analysis.
Keywords: Humanitarian supply chain, location decision, resource allocation, local level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45611182 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.
Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324711181 Simple Agents Benefit Only from Simple Brains
Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde
Abstract:
In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.
Keywords: Neural network, probabilistic control, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143011180 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison
Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser
Abstract:
The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.
Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175311179 Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network
Authors: Gyou-tae Park, Young-gyu Kim, Jeong-rock Kwon, Yongwoo Lee, Hiesik Kim
Abstract:
The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.Keywords: micom gas-meter, gas safety, zigbee, ubiquitous
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948