Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1667

Search results for: image indexing and retrieval

1667 Object-Based Image Indexing and Retrieval in DCT Domain using Clustering Techniques

Authors: Hossein Nezamabadi-pour, Saeid Saryazdi

Abstract:

In this paper, we present a new and effective image indexing technique that extracts features directly from DCT domain. Our proposed approach is an object-based image indexing. For each block of size 8*8 in DCT domain a feature vector is extracted. Then, feature vectors of all blocks of image using a k-means algorithm is clustered into groups. Each cluster represents a special object of the image. Then we select some clusters that have largest members after clustering. The centroids of the selected clusters are taken as image feature vectors and indexed into the database. Also, we propose an approach for using of proposed image indexing method in automatic image classification. Experimental results on a database of 800 images from 8 semantic groups in automatic image classification are reported.

Keywords: Object-based image retrieval, DCT domain, Image indexing, Image classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
1666 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1665 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval

Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan

Abstract:

This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.

Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1664 Content-based Retrieval of Medical Images

Authors: Lilac A. E. Al-Safadi

Abstract:

With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.

Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
1663 Evaluating Content Based Image Retrieval Techniques with the One Million Images CLIC Test Bed

Authors: Pierre-Alain Moëllic, Patrick Hède, Gr egory Grefenstette, Christophe Millet

Abstract:

Pattern recognition and image recognition methods are commonly developed and tested using testbeds, which contain known responses to a query set. Until now, testbeds available for image analysis and content-based image retrieval (CBIR) have been scarce and small-scale. Here we present the one million images CEA-List Image Collection (CLIC) testbed that we have produced, and report on our use of this testbed to evaluate image analysis merging techniques. This testbed will soon be made publicly available through the EU MUSCLE Network of Excellence.

Keywords: CBIR, CLIC, evaluation, image indexing and retrieval, testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1662 Image Retrieval: Techniques, Challenge, and Trend

Authors: Hui Hui Wang, Dzulkifli Mohamad, N.A Ismail

Abstract:

This paper attempts to discuss the evolution of the retrieval techniques focusing on development, challenges and trends of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image data leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users- mind.

Keywords: content based image retrieval, keyword based imageretrieval, semantic gap, semantic image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
1661 Image Indexing Using a Color Similarity Metric based on the Human Visual System

Authors: Angelo Nodari, Ignazio Gallo

Abstract:

The novelty proposed in this study is twofold and consists in the developing of a new color similarity metric based on the human visual system and a new color indexing based on a textual approach. The new color similarity metric proposed is based on the color perception of the human visual system. Consequently the results returned by the indexing system can fulfill as much as possibile the user expectations. We developed a web application to collect the users judgments about the similarities between colors, whose results are used to estimate the metric proposed in this study. In order to index the image's colors, we used a text indexing engine to facilitate the integration of visual features in a database of text documents. The textual signature is build by weighting the image's colors in according to their occurrence in the image. The use of a textual indexing engine, provide us a simple, fast and robust solution to index images. A typical usage of the system proposed in this study, is the development of applications whose data type is both visual and textual. In order to evaluate the proposed method we chose a price comparison engine as a case of study, collecting a series of commercial offers containing the textual description and the image representing a specific commercial offer.

Keywords: Color Extraction, Content-Based Image Retrieval, Indexing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
1660 Indexing and Searching of Image Data in Multimedia Databases Using Axial Projection

Authors: Khalid A. Kaabneh

Abstract:

This paper introduces and studies new indexing techniques for content-based queries in images databases. Indexing is the key to providing sophisticated, accurate and fast searches for queries in image data. This research describes a new indexing approach, which depends on linear modeling of signals, using bases for modeling. A basis is a set of chosen images, and modeling an image is a least-squares approximation of the image as a linear combination of the basis images. The coefficients of the basis images are taken together to serve as index for that image. The paper describes the implementation of the indexing scheme, and presents the findings of our extensive evaluation that was conducted to optimize (1) the choice of the basis matrix (B), and (2) the size of the index A (N). Furthermore, we compare the performance of our indexing scheme with other schemes. Our results show that our scheme has significantly higher performance.

Keywords: Axial Projection, images, indexing, multimedia database, searching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
1659 Text Retrieval Relevance Feedback Techniques for Bag of Words Model in CBIR

Authors: Nhu Van NGUYEN, Jean-Marc OGIER, Salvatore TABBONE, Alain BOUCHER

Abstract:

The state-of-the-art Bag of Words model in Content- Based Image Retrieval has been used for years but the relevance feedback strategies for this model are not fully investigated. Inspired from text retrieval, the Bag of Words model has the ability to use the wealth of knowledge and practices available in text retrieval. We study and experiment the relevance feedback model in text retrieval for adapting it to image retrieval. The experiments show that the techniques from text retrieval give good results for image retrieval and that further improvements is possible.

Keywords: Relevance feedback, bag of words model, probabilistic model, vector space model, image retrieval

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
1658 Data Extraction of XML Files using Searching and Indexing Techniques

Authors: Sushma Satpute, Vaishali Katkar, Nilesh Sahare

Abstract:

XML files contain data which is in well formatted manner. By studying the format or semantics of the grammar it will be helpful for fast retrieval of the data. There are many algorithms which describes about searching the data from XML files. There are no. of approaches which uses data structure or are related to the contents of the document. In these cases user must know about the structure of the document and information retrieval techniques using NLPs is related to content of the document. Hence the result may be irrelevant or not so successful and may take more time to search.. This paper presents fast XML retrieval techniques by using new indexing technique and the concept of RXML. When indexing an XML document, the system takes into account both the document content and the document structure and assigns the value to each tag from file. To query the system, a user is not constrained about fixed format of query.

Keywords: XML Retrieval, Indexed Search, Information Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1657 Salient Points Reduction for Content-Based Image Retrieval

Authors: Yao-Hong Tsai

Abstract:

Salient points are frequently used to represent local properties of the image in content-based image retrieval. In this paper, we present a reduction algorithm that extracts the local most salient points such that they not only give a satisfying representation of an image, but also make the image retrieval process efficiently. This algorithm recursively reduces the continuous point set by their corresponding saliency values under a top-down approach. The resulting salient points are evaluated with an image retrieval system using Hausdoff distance. In this experiment, it shows that our method is robust and the extracted salient points provide better retrieval performance comparing with other point detectors.

Keywords: Barnard detector, Content-based image retrieval, Points reduction, Salient point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
1656 Enhancing capabilities of Texture Extraction for Color Image Retrieval

Authors: Pranam Janney, Sridhar G, Sridhar V.

Abstract:

Content-Based Image Retrieval has been a major area of research in recent years. Efficient image retrieval with high precision would require an approach which combines usage of both the color and texture features of the image. In this paper we propose a method for enhancing the capabilities of texture based feature extraction and further demonstrate the use of these enhanced texture features in Texture-Based Color Image Retrieval.

Keywords: Image retrieval, texture feature extraction, color extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
1655 Local Image Descriptor using VQ-SIFT for Image Retrieval

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventional algorithm while the computational cost is significantly reduced.

Keywords: SIFT feature, Vector quantization histogram, Localdescriptor, Image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1654 Performance Evaluation of Content Based Image Retrieval Using Indexed Views

Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris

Abstract:

Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.

Keywords: Content based image retrieval (CBIR), Indexed view, Color, Image retrieval, Cross correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1653 Lecture Video Indexing and Retrieval Using Topic Keywords

Authors: B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa

Abstract:

In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users.

Keywords: Video indexing and retrieval, lecture videos, content based video search, multimodal indexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
1652 Composite Relevance Feedback for Image Retrieval

Authors: Pushpa B. Patil, Manesh B. Kokare

Abstract:

This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.

Keywords: Image retrieval, relevance feedback, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
1651 Secure Image Retrieval Based On Orthogonal Decomposition under Cloud Environment

Authors: Yanyan Xu, Lizhi Xiong, Zhengquan Xu, Li Jiang

Abstract:

In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.

Keywords: Secure image retrieval, secure search, orthogonal decomposition, secure cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1650 NOHIS-Tree: High-Dimensional Index Structure for Similarity Search

Authors: Mounira Taileb, Sami Touati

Abstract:

In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.

Keywords: High-dimensional indexing, k-nearest neighborssearch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
1649 Effectiveness of Dominant Color Descriptor Technique in Medical Image Retrieval Application

Authors: Mohd Kamir Yusof

Abstract:

This paper presents a dominant color descriptor technique for medical image retrieval. The medical image system will collect and store into medical database. The purpose of dominant color descriptor (DCD) technique is to retrieve medical image and to display similar image using queried image. First, this technique will search and retrieve medical image based on keyword entered by user. After image is found, the system will assign this image as a queried image. DCD technique will calculate the image value of dominant color. Then, system will search and retrieve again medical image based on value of dominant color query image. Finally, the system will display similar images with the queried image to user. Simple application has been developed and tested using dominant color descriptor. Result based on experiment indicates this technique is effective and can be used for medical image retrieval.

Keywords: Medical Image Retrieval, Dominant ColorDescriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
1648 Semantic Indexing Approach of a Corpora Based On Ontology

Authors: Mohammed Erritali

Abstract:

The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. This paper presents a new semantic indexing approach of a documentary corpus. The indexing process starts first by a term weighting phase to determine the importance of these terms in the documents. Then the use of a thesaurus like Wordnet allows moving to the conceptual level. Each candidate concept is evaluated by determining its level of representation of the document, that is to say, the importance of the concept in relation to other concepts of the document. Finally, the semantic index is constructed by attaching to each concept of the ontology, the documents of the corpus in which these concepts are found.

Keywords: Semantic, indexing, corpora, WordNet, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
1647 Research on the Relevance Feedback-based Image Retrieval in Digital Library

Authors: Rongtao Ding, Xinhao Ji, Linting Zhu

Abstract:

In recent years, the relevance feedback technology is regarded in content-based image retrieval. This paper suggests a neural networks feedback algorithm based on the radial basis function, coming to extract the semantic character of image. The results of experiment indicated that the performance of this relevance feedback is better than the feedback algorithm based on Single-RBF.

Keywords: Image retrieval, relevance feedback, radial basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
1646 Application of l1-Norm Minimization Technique to Image Retrieval

Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra

Abstract:

Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.

Keywords: l1-norm minimization, content based retrieval, modified Gabor function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154
1645 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
1644 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach

Authors: N. Shanmugapriya, R. Nallusamy

Abstract:

Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.

Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1643 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469
1642 Retrieval of User Specific Images Using Semantic Signatures

Authors: K. Venkateswari, U. K. Balaji Saravanan, K. Thangaraj, K. V. Deepana

Abstract:

Image search engines rely on the surrounding textual keywords for the retrieval of images. It is a tedious work for the search engines like Google and Bing to interpret the user’s search intention and to provide the desired results. The recent researches also state that the Google image search engines do not work well on all the images. Consequently, this leads to the emergence of efficient image retrieval technique, which interprets the user’s search intention and shows the desired results. In order to accomplish this task, an efficient image re-ranking framework is required. Sequentially, to provide best image retrieval, the new image re-ranking framework is experimented in this paper. The implemented new image re-ranking framework provides best image retrieval from the image dataset by making use of re-ranking of retrieved images that is based on the user’s desired images. This is experimented in two sections. One is offline section and other is online section. In offline section, the reranking framework studies differently (reference classes or Semantic Spaces) for diverse user query keywords. The semantic signatures get generated by combining the textual and visual features of the images. In the online section, images are re-ranked by comparing the semantic signatures that are obtained from the reference classes with the user specified image query keywords. This re-ranking methodology will increases the retrieval image efficiency and the result will be effective to the user.

Keywords: CBIR, Image Re-ranking, Image Retrieval, Semantic Signature, Semantic Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1641 A Universal Model for Content-Based Image Retrieval

Authors: S. Nandagopalan, Dr. B. S. Adiga, N. Deepak

Abstract:

In this paper a novel approach for generalized image retrieval based on semantic contents is presented. A combination of three feature extraction methods namely color, texture, and edge histogram descriptor. There is a provision to add new features in future for better retrieval efficiency. Any combination of these methods, which is more appropriate for the application, can be used for retrieval. This is provided through User Interface (UI) in the form of relevance feedback. The image properties analyzed in this work are by using computer vision and image processing algorithms. For color the histogram of images are computed, for texture cooccurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD) that is found. For retrieval of images, a novel idea is developed based on greedy strategy to reduce the computational complexity. The entire system was developed using AForge.Imaging (an open source product), MATLAB .NET Builder, C#, and Oracle 10g. The system was tested with Coral Image database containing 1000 natural images and achieved better results.

Keywords: Content Based Image Retrieval (CBIR), Cooccurrencematrix, Feature vector, Edge Histogram Descriptor(EHD), Greedy strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
1640 Fast Database Indexing for Large Protein Sequence Collections Using Parallel N-Gram Transformation Algorithm

Authors: Jehad A. H. Hammad, Nur'Aini binti Abdul Rashid

Abstract:

With the rapid development in the field of life sciences and the flooding of genomic information, the need for faster and scalable searching methods has become urgent. One of the approaches that were investigated is indexing. The indexing methods have been categorized into three categories which are the lengthbased index algorithms, transformation-based algorithms and mixed techniques-based algorithms. In this research, we focused on the transformation based methods. We embedded the N-gram method into the transformation-based method to build an inverted index table. We then applied the parallel methods to speed up the index building time and to reduce the overall retrieval time when querying the genomic database. Our experiments show that the use of N-Gram transformation algorithm is an economical solution; it saves time and space too. The result shows that the size of the index is smaller than the size of the dataset when the size of N-Gram is 5 and 6. The parallel N-Gram transformation algorithm-s results indicate that the uses of parallel programming with large dataset are promising which can be improved further.

Keywords: Biological sequence, Database index, N-gram indexing, Parallel computing, Sequence retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1639 An Optical Flow Based Segmentation Method for Objects Extraction

Authors: C. Lodato, S. Lopes

Abstract:

This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1638 A Study of Gaps in CBMIR Using Different Methods and Prospective

Authors: Pradeep Singh, Sukhwinder Singh, Gurjinder Kaur

Abstract:

In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.

Keywords: Classification, clustering, content-based image retrieval (CBIR), relevance feedback (RF), statistical similarity matching, support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513