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Abstract—Handwritten signature is a unique form for recognizing
an individual, used to discern documents, carry out investigations in
the criminal, legal, banking areas and other applications. Signature
verification is based on large amounts of biometric data, as they are
simple and easy to acquire, among other characteristics. Given this
scenario, signature forgery is a worldwide recurring problem and fast
and precise techniques are needed to prevent crimes of this nature
from occurring. This article carried out a study on the efficiency of
the Capsule Network in analyzing and recognizing signatures. The
chosen architecture achieved an accuracy of 98.11% and 80.15% for
the CEDAR and GPDS databases, respectively.

Keywords—Biometrics, deep learning, handwriting, signature
forgery.

I. INTRODUCTION

AWay of unique identification of different individuals

around the world is by their handwritten signature.

This becomes a sign of the person and expresses different

characteristics about the subscriber. Different types of

signatures currently exist, such as handwritten, electronic,

digital and scanned. Among those mentioned, the safest

signatures are digital and electronic, since the integrity of

the data is guaranteed, because they are legally valid and

authenticity verification is carried out by various means,

therefore, reducing the likelihood of forgery crime. However,

handwritten signatures remain the most common way of

document authentication.

The handwritten signature has a high possibility of

forgery. If a graphotechnical examination takes place, different

characteristics and factors will be evaluated, such as writing

speed, pressure placed at the time of signing, among others.

However, the expertise is carried out by a specialist and has

the potential to become a lengthy and subjective process. This

process does not have a standard that dictates which basic

steps must be followed, that is, each graphotechnical expert

follows what he/she considers to be correct.

The process of acquiring and identifying signatures can

be grouped into 2 methods [1]. The first is off-line, where

the signature is on a document that needs to be scanned

by a device. Although easy, the dynamic characteristics of

signatures, such as the pressure applied to the pen when

writing, the color of the pen used, and speed are lost. In

the on-line method, the signature is obtained using special

electronic devices, such as tablets and cell phones. In this type

of signature verification, fraud is more difficult to occur and

dynamic properties are preserved. The characteristics achieved
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in the off-line method are not as accurate as those obtained

in on-line, and the off-line images may contain noise, making

the process more complex.

The main purpose of signature verification is to differentiate

authentic signatures from tampered ones. There are 2

approaches for checking signatures off-line: writer-dependent
(WD) and writer-independent (WI). In the writer-dependent, a

model is trained for each person. If a new signature is added

for an individual, the model needs to be retrained for that

person. In the writer-independent approach, a model is trained

for all individuals. That is, if a new signature is added, it is

not necessary to train a new model.

Deep learning models such as the Convolution Networks

(CNNs) are actively used in the area of image recognition and,

consequently, in the area of signature recognition. The main

objective of this article is to evaluate the effectiveness of the

Capsule Network (CapsNet) [2] on detecting signature forgery

so that this task may be automated, avoiding slow, subjective

and imprecise analysis. The experiments were applied to the

CEDAR [3] and the GPDS Synthetic On-line & Off-line

Signature databases [4].

This article is organized as follows: Section II presents

the works related to the theme of signature analysis; Section

III explains the main concepts and the architecture of

Capsule Network; Section IV describes the databases used,

pre-processing steps, and the evaluation metrics, as well as the

methodology; Section V presents and discusses the obtained

results and, finally, Section VI presents the concluding

remarks.

II. RELATED WORK

Considering the context of Convolutional Neural Networks,

[5] evaluated whether the use of CNN resources provides

good results for verifying independent-writer signatures. A

Support Vector Machine (SVM) was used as a classifier and

the Dichotomy Transformation (DT) as the transformer of

a multiclass problem into binary. The GPDS-960 databases

(union of the GPDS-160 and GPDS-300 databases) [4] and

a Brazilian database (PUC-PR) [1] were used. Statistical

functions such as the maximum, minimum, median and mean

were used, aiming to determine satisfactory results for the

partial decision fusion rule. The article’s proposal achieved

better values with the maximum function and the PUC-PR

dataset when compared with other works.

CapsNet was used by [6] and its performance compared

to other CNN models in the task of signature analysis. Only

the reduced CEDAR database was used in the experiments
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and the images were reduced to resolutions of 64x64 and

32x32. For identification, only genuine signatures were used

in the 2 resolutions mentioned. For verification, original and

falsified images in 64x64 resolution were used. The results

obtained in the verification achieved an average accuracy of

90%. The authors concluded that CapsNet had a potential to

the verification and identification tasks, indicating that it was

reliable for classifying signatures and could deal satisfactorily

with the division of genuine and forged signatures.

From another perspective, [7] proposed the Local Difference
Feature (LDF), a new texture feature with the aim of

verifying handwritten signatures off-line, where the difference

is calculated between the central pixel and 8 neighbors taken

within a specific radius. SVM is used in the verification task

where only genuine signatures are used for trained, while

testing is done on genuine and forged ones. The new feature

was compared with other common classification features, such

as Gradient-Oriented Histogram and Local Binary Patterns

(LBP) with improvements in accuracy. Following the same

idea, [8] suggests multiscale LDF to improve the verification

of handwritten signatures. The proposed descriptor is similar to

LBP in that it highlights the difference between the pixel and

its neighbors. SVM was used and verification performed using

a writer-dependent approach. The authors highlighted that the

values achieved for the CEDAR and GPDS-300 databases

were satisfactory and when compared with other articles, high

accuracy could be obtained using a reduced database.

Using histograms, [9] suggests a feature-based multiscale

fusion to perform signature description. This combines texture

and shape information, seeking to improve the characterization

of handwritten signatures. LDF is introduced as a new

descriptor combined with Histogram of Templates. To verify

signatures, the writer-dependent approach was used with the

SVM classifier. The results obtained were significant for the

GPDS-300 and MYCT-75 bases. Therefore, the multiscale

calculation allowed an improvement in accuracy compared to

other available methods.

Considering the writer-dependent and writer-independent

approaches, [10] used CNN to train the WI approach, where

the network was used to extract the characteristics of the

off-line signatures in the WD approach. SVM was employed to

classify genuine and forged signatures. The tests were carried

out on 3 databases, where the GPDS-40000 achieved 92.03%

of accuracy. The results obtained using different databases

proved the efficiency of the suggested method for verifying

off-line signatures. [11] proposed a new method that uses

Deep Neural Network (DNN) with pairwise loss for off-line

verification of WI signatures. The CEDAR database was

used and 92.76% of accuracy was achieved, surpassing other

available techniques.

A literature review on signature recognition using Machine

Learning was carried out in [1], where the main objective

was to determine the best algorithm to perform signature

recognition based on their type. The baseline model used

for off-line identification was the CNN. For on-line signature

recognition, Recurrent Neural Networks (RNN) was used most

of the time, in conjunction with other architectures.

On the other hand, [12] proposed a modification to the

Siamese Network. The first suggestion would be to use a

2-phase CNN in order to simultaneously verify images of

handwritten signatures. The second would be to apply the

Focal Loss function to deal with the imbalance between

genuine and counterfeit samples. The proposed method

achieved better accuracy for the chosen databases and the

Focal Loss function effectively solved the imbalance of

genuine and falsified data.

In view of new proposed networks, [13] presented a model

called Adversarial Variation Network (AVN) in order to verify

handwritten signatures and generate new data by extracting

features efficiently. The accuracy results obtained were 96.16%

and 90.32%, for the CEDAR and GPDS-4000 databases. A

total of 4 databases from different languages were used.

III. CAPSULE NETWORK

CNNs were first published by [14]. The model is composed

of convolutional and fully-connected layers, where the

convolutional ones are responsible for extracting the basic

characteristics that portray the content of the image, in

addition to applying filters in order to facilitate the recognition

of patterns that will be carried out in the next step. The

second sequence of layers is responsible for classifying the

attributes extracted from the first. CNNs require a minimum

level of pre-processing when compared to other classification

algorithms and have become extremely popular in image

recognition and object detection problems.

CNNs have limitations, such as the significant loss of spatial

relationships, due to the pooling process. Therefore, CNNs are

not as efficient in investigating spatial relationships between

features. From this perspective, [2] proposed the Capsule
Network, a network focused on image recognition, aiming to

solve some of the problems that CNNs present.

CapsNet is invariant to geometric transformations, such as

rotation and translation, but it is sensitive to the appearance

of specific features and their orientations, among other

advantages. It protects the hierarchical links existing in the

image, with the aim of determining the existence of a

characteristic, as well as the spatial relationship with the other

properties of the image. This is accomplished with vectors

that contain information such as position, size, orientation,

deformation, object texture of the entities.

CapsNet’s main difference is the capsule concept. Capsules

are sets of neurons structured in hierarchical layers that

represent the instantiation properties of an object or part of

an object. This group of neurons receives input elements and

generates an output in the form of an activity vector. The

capsule activity portrays the various properties that are present

in the image, such as position, size and texture. A squashing
function is applied to the activity vector, aiming to restrict its

length to a value between 0 and 1.

The CapsNet architecture, shown in Fig. 1, has a total of

3 layers. The first is a convolutional layer, Conv1, which

has 256 filters with 9x9 convolutions, with stride equal to

1 and Rectified Linear Unit (ReLU) activation function. The

second layer is of primary capsules, PrimaryCaps, consisting

of 32 convolutional capsules in which each capsule includes
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8 convolutional units with a 9x9 kernel and stride 2. The

last is a fully connected layer, DigitCaps, composed of

a 16-dimensional capsule for each digit class, so that each

capsule of these dimensions is connected to all capsules in the

last layer. Finally, the output of the last layer is the activity

vector.

Dynamic routing and routing by agreement is performed

between the PrimaryCaps and DigitCaps capsules, allowing

capsules at higher levels to serve active capsules at lower

levels and ignore the others. This process allows the model to

recognize multiple objects in the image, even if they overlap.

IV. MATERIALS AND METHODS

A. Data sets

The CEDAR database [3] used in this article consists of

off-line signatures where 1,320 are genuine and 1,320 are

forged, totaling 2,640 off-line signatures. The samples are

in gray scale, all are in English and in PNG format. They

are divided into a folder of original images and a folder of

forged images. Fig. 2 shows examples of genuine and forged

signatures taken from the database.

The GPDS Synthetic On-line & Off-line Signature data

set (GPDS) proposed by [4], is a database of off-line and

on-line signatures which contains 10,000 signatures. It has

1,124 folders, where there are 24 genuine samples and 30 fake

samples in each, totaling 26,976 original signatures and 33,720

forged ones. The static samples were obtained with different

pen models, where all images are in PNG format and at 600

dpi resolution. Dynamic samples are in the MAT format, which

contains the x and y coordinates of the signatures.

The images in each of the databases have different

dimensions and a varied number of forged and original

signatures. Table I presents a summary of the information

for each of the databases.

TABLE I
DATASET INFORMATION

Dataset CEDAR GPDS
Language English Spanish
Number of samples 55 10,000
Number of folders 2 1,124
Original signatures per person 24 24
Forged signatures per person 24 30
Format PNG PNG
Resolution NA 600 dpi

B. Pre-processing

In order to balance the number of images in the 2 databases,

different procedures were applied. For CEDAR, the signatures

of each person were divided into folders with 24 falsified

images and 24 original images. For GPDS, 6 forged images

were excluded from each of the folders, as there was a

discrepancy in the number of originals and forged images.

A partition in the databases was carried out, so that images of

the same person would not used for the training, testing and

validation stages.

Training, validation and test folders were created for the

CEDAR and GPDS bases. The folders with the images were

shuffled and divided with the following percentages, 70% for

training, 20% for testing and 10% for validation.

A k-fold cross validation strategy with k = 10 was used,

which consists of dividing the database into sets and using

each of these sets for training and the other part for testing.

K-fold divides the database randomly into k subsets and at

each iteration a set consisting of k − 1 subsets are used for

training and the rest are used for testing.

The files were saved in specific directories related to the

training, validation and test images. For the part where the

k-fold method was applied, the test section contained only

1 directory with the necessary images. For validation and

training, directories were created for each of the splits carried

out and each contained the corresponding images.

Initially, the image paths and their labels were stored.

Original signatures were assigned label 0 and the remaining

forged images the label 1. Subsequently, all images were read,

converted to RGB mode, normalized in a range from 0 to 255,

and a anti-aliasing filter was applied. The anti-aliasing filter

was used in order to reduce the pixelated effect in signatures.

This means that a low-pass filter was applied, aiming to make

them look more smooth. Images have been resized to 64x64

pixels.

C. Evaluation Metrics

The metrics of False Acceptance Rate (FAR), False

Rejection Rate (FRR), Avarage Error Rate (AER), Precision,

Recall and Accuracy were used to evaluate the model quality.

They were based on the number of true positives (TP)

(original signatures considered valid), true negatives (TN)

(forged signatures considered fake), false positive (FP) (forged

signatures considered valid) and false negatives (FN) (original

signatures considered fake).

The False Acceptance Rate (FAR) measures the number of

forged signatures accepted as original. The value of this metric

remaining low is interesting, as it aims to ensure that only

genuine signatures have access:

FAR =
FP

FP + TN
. (1)

The False Rejection Rate (FRR) is the number of genuine

signatures rejected by the system:

FRR =
FN

FN + TP
. (2)

The Average Error Rate (AER) is the average of the results

obtained in FAR and FRR. The lower the value of this metric,

the higher the signature recognition accuracy:

AER =
FAR+ FRR

2
. (3)

Accuracy is a percentage that represents the fraction of

correct instances in relation to the total number of predictions

made, that is, the model’s ability to avoid both false positives

and false negatives. Recall measures the percentage of original

predictions correctly classified in relation to the total number

of original instances, that is, the model’s ability to find positive

cases.
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Fig. 1 The Capsule Network Architecture consisting of a convolutional layer, Conv1, a layer of primary capsules, PrimaryCaps, and a fully connected layer,
DigitCaps applied to digit recognition [2]

(a)

(b)

Fig. 2 Sample of signatures from CEDAR: (a) True signature (b) Forged
signature

D. Methods

The results obtained from CapsNet were compared with

those from MobileNetV2, in order to verify CapsNet’s

performance. The reason for choosing MobileNetV2 over other

CNN models is its simplicity allied to high precision, as

a compromise solution that is suitable to simpler hardware

systems. The Python programming language was chosen

together with TensorFlow, Keras and Sklearn. A machine with

an 8th generation Intel Core i7 processor, 20 GB RAM and

A100 GPU was used for k-fold training.

The reasons why CapsNet was chosen over other more

recent networks in the literature are the following: they have

hierarchical learning through the concept of capsules, they

have greater interpretability due to the fact that capsules

are responsible for representing specific entities. They are

invariant to transformations, that is, the network can recognize

an object, regardless of its orientation or position within the

image. After the necessary investigations, not many reliable

articles were found about CapsNet being considered a potential

network for the area of signature recognition.

The network used in this article used the hyperparameters

presented in Table II. The loss function used for CapsNet

was Margin Loss, as proposed in the original paper. For

MobileNetV2, the loss function was the Binary Cross-Entropy.

V. RESULTS

Certain points need to be clarified before starting a

discussion of the results obtained with the chosen neural

networks. Firstly, it was not possible to compare the results

TABLE II
LIST OF HYPER-PARAMETERS

Parameters Vaue
Optimizer Adam
Learning rate 0.0001
Batch size 128

achieved from the CEDAR and GPDS bases, as they are

completely different sets, but mainly due to the fact that

the GPDS has synthetic data. Second point, the article

[15] in which the CapsNet network was presented uses

the writer-dependent approach, where the network is trained

for each person. However, the present work employed the

writer-independent approach, in which one model is trained

for all individuals.

Fig. 3 presents two plots of the accuracy results obtained

for training and validation for the CEDAR database using

CapsNet and MobileNetV2. The blue curve represents the

training accuracy and the red curve represents the validation

accuracy throughout the training.

For the CapsNet, it can be seen that at certain epoch values,

the validation curve decreases, however, in the next epoch

it returns to be close to the training curve. After epoch 55,

it is clear that the training and validation curves are close.

The behavior that the CapsNet presents is that the network

managed to learn the signatures from the CEDAR database.

As for the MobileNetV2 plot, it is observed that for the

validation curve there are several variations throughout the

epochs. The training curve presents a more stable behavior,

and from epoch 3 onwards, the values remain stable without a

sudden change in the curve. Therefore, it is possible to notice

that MobileNetV2 did not reach stable learning, as CapsNet

did.

In Table III it can be seen that the CapsNet test

results outperformed those of MobileNetV2. CapsNet achieved

an accuracy of 98.11%, while MobileNetV2 reached only

81.63%. The most relevant point is presented in the False

Acceptance Rate, False Rejection Rate and Average Error

Rate metrics. The FAR and FRR values for CapsNet were

3.41% and 0.38%, respectively. In contrast, MobileNetV2

achieved a FAR of 94.85% and FRR of 60.09%. High

FAR and FRR values tell that MobileNetV2 is considering

forged signatures as genuine and is rejecting originals. The

AER values for CapsNet and MobileNetV2 were 1.89%

and 77.47%, respectively. The low AER value for CapsNet
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(a)

(b)

Fig. 3 Accuracy results obtained for CEDAR during training (blue) and validation (red) for 70 epochs with: (a) CapsNet, and (b) MobileNetV2

indicates that the network has high signature recognition

accuracy. MobileNetV2 has low accuracy in this task.

The results achieved for CEDAR, using the CapsNet

network, were extremely satisfactory, being demonstrated by

the accuracy metric, which obtained a difference of 22.9

percentage points. This demonstrates that CapsNet learned

effectively in training and the accuracy when identifying

signatures is high. On the other hand, MobileNetV2 did not

obtain such good results, despite an accuracy of 81.63%. The

values achieved with the FAR, FRR and AER metrics indicated

that the model is not performing well enough to recognize

signatures, and consequently, it did not reached the necessary

learning level.

Fig. 4 shows a plot of the accuracy values for the training

and validation with GPDS for the MobileNetV2 network. The

blue and red curve are the training and validation accuracy,

respectively. Firstly, it is noted that training and validation do

not intersect at any time throughout the execution. At some

epochs validation values show a behavior of slight increasing

followed by decreasing. For training, the values begin to rise
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TABLE III
RESULTS OBTAINED FOR CEDAR

Network FAR 1 FRR 2 AER 3 Precision Recall Accuracy
CapsNet 3,41% 0,38% 1,89% 96,69% 99,62% 98,11%
MobileNetV2 94,85% 60,09% 77,47% 73,79% 98,11% 81,63%

1False Acceptance Rate, 2False Rejection Rate, 3Avarage Error Rate

TABLE IV
INITIAL RESULTS OBTAINED FOR THE GPDS DATABASE

Neural Network FAR 1 FRR 2 AER 3 Accuracy Recall Accuracy
CapsNet 21.54% 18.15% 19.85% 76.17% 81.85% 80.15%
MobileNetV2 63.20% 14.18% 38.69% 62.92% 85.82% 64.03%

1False Acceptance Rate, 2False Rejection Rate, 3Average Error Rate

TABLE V
t STATISTICS AND P-VALUES OBTAINED FOR EEACH METRIC

Metric Accuracy Recall Precision FAR 1 FRR 2 AER 3

t 94.5 19.09 33.45 -13.81 -19.09 -93.98
p 4.2e-15 6.8e-9 4.7e-11 1.2e-7 6.8e-9 4.4e-5

1False Acceptance Rate, 2False Rejection Rate, 3Average Error Rate

TABLE VI
MEAN AND STANDARD DEVIATION VALUES OBTAINED BY CAPSNET FOR EACH METRIC

Metric Accuracy Recall Precision FAR 1 FRR 2 AER 3

Average 82.6% 81.5% 83.4% 16.3% 18.5% 17.4%
Standard Deviation 0.5% 3.3% 1.9% 3% 3.3% 0.5%

1False Acceptance Rate, 2False Rejection Rate, 3Avarage Error Rate

progressively and after epoch 20, they approach 100% but do

not decrease at any time. The plots shows that the network

was unable to efficiently learn the recognition of original and

forged signatures.

Fig. 5 presents a plot of the training and validation results

obtained for the GPDS database using CapsNet, where the

blue curve is the accuracy for training and the red curve is the

validation. Initially, for epochs 1 and 2, the validation values

achieved are higher than the training values. However, from

epoch 3 onwards, training begins to overlap validation. For the

training curve, an increase in accuracy values is observed over

the 30 epochs. However, it is notable that the values of the

validation curve, after epoch 7, begin to decline. In this way,

the plot illustrate the problem of overfitting, which basically

occurs when the model has excellent results in training while

performing poorly in validation and testing.

Table IV shows the CapsNet and MobileNetV2 test results,

where it can be seen that the performance of neither of the

2 networks was satisfactory. However the results of CapsNet

were superior to those of MobileNetV2. A metric in which it

is possible to observe a difference between the 2 networks

is accuracy, where MobileNetV2 obtained 63.04%, while

CapsNet obtained 80.15%, a difference of 17.71 percentage

points. The only metrics that stood out from CapsNet were

Recall where it reached 85.82% and False Rejection Rate

where it reached 14.18%, it is important to highlight that a

reduced value of the latter is desirable. However, as previously

stated, neither of the results from the 2 networks were

surprisingly good. This indicates that the networks are not

achieving good accuracy when identifying signatures, where

many of them are being considered forged, although they are

original.

An evaluation of the statistical significance of the results

from the k folds was carried out using the paired t test with

a type-I error rate of 0.05. The same null hypothesis was

considered for all metrics, i.e. that using CapsNet would not

impact the results (equal averages).

Table V shows the t statistics and p-values for each metric.

For the accuracy, precision and recall, the null hypothesis is

rejected, as the p-values are less than 0.05. Therefore, the

mean difference is high enough to claim that it is statistically

significant. The smaller the p-value, the more it supports the

alternative hypothesis. For the FAR, FRR and AER metrics,

the p-values are less than 0.05, indicating that the null

hypothesis is rejected.

Tables VI and VII present the mean and standard deviation

values for the experiments with the CapsNet and MobileNetV2

networks, respectively. Considering the alternative hypothesis

that the average values for accuracy, recall and precision are

higher for CapsNet, it is noted that it stood out compared

to the results of MobileNetV2, achieving accuracy of 82.6%,

recall was 81.5% and precision was 83.4%. As for the

average values of FAR, FRR and AER, where the alternative

hypothesis is that the values obtained with CapsNet are lower

than those of MobileNet, it is observed that CapsNet, again,

obtained lower values for these metrics. For the FAR metric,

CapsNet achieved an average of 16.3%, while MobileNetV2

achieved an average of 71.8%. Therefore, this indicates

that CapsNet is significantly better, that is, the learning of

genuine and forged signatures occurred more effectively than

MobileNetV2. The standard deviation values for CapsNet were

low, as evidenced with the False Acceptace Rate metric in
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TABLE VII
MEAN AND STANDARD DEVIATION VALUES OBTAINED BY MOBILENETV2 FOR EACH METRIC

Metric Accuracy Recall Precision FAR 1 FRR 2 AER 3

Average 22.9% 17.6% 18.5% 71.8% 82.4% 77.1%
Standard Deviation 1.9% 9.8% 5.8% 12.1% 9.8% 2%

1False Acceptance Rate, 2False Rejection Rate, 3Average Error Rate

Fig. 4 Accuracy results obtained for GDPS during training (blue) and validation (red) for 30 epochs using MobileNetV2

Fig. 5 Accuracy results obtained for GDPS during training (blue) and validation (red) for 30 epochs using CapsNet.

which CapsNet achieved 3% while MobileNetV2 achieved

12.1%. It is important to highlight that the consistency of

the model is directly related to a reduced value of standard

deviation.

After analyzing the values obtained in Tables V, VI and VII

it is possible to state that the CapsNet is significantly superior
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for GPDS, as evidenced by the p-value equal to 4.2e-15 for

accuracy. When analyzing the MobileNetV2 scenario, CapsNet

proved to be more reliable for identifying signatures.

Finally, CapsNet was also superior to MobileNetV2 for

CEDAR, as it obtained a difference of 16.48 percentage points.

Furthermore, CapsNet demonstrated to be statically significant

in the task of signature recognition. However, neither of the

2 networks achieved results higher than 90% in accuracy

for GPDS, making it necessary to apply Overfitting control

techniques.

VI. CONCLUSION

The main objective of the article was to evaluate the

performance of the Capsule Network compared to another

CNN of the same size for the task of identifying genuine and

forged signatures. The chosen network was the MobileNetV2

because of its simplicity and high performance on many other

image recognition applications. Two public databases were

used to investigate CapsNet’s performance. The CEDAR and

GDPS data sets have different natures and have undergone

the same normalization and pre-processing techniques. K-Fold

cross-validation was applied, aiming to verify the model’s level

of reliability.

The results obtained for CapsNet were superior to those for

MobileNetV2, especially for CEDAR, achieving accuracy of

98.11% for CapsNet and 81.63% for MobileNetV2. The same

pattern was observed for the GDPS dataset so that it could be

possible to verify that the performance of Capsule Network

was superior compared to MobileNetV2.

Future work include comparing Capsule Networks with

other CNNs that require more computational effort. The

application of procedures to solve Overfitting, such as

Droupout, data augmentation to increase the number of images

in the base, changes in the loss function, among other

possibilities may also improve the already high performance

obtained with Capsule Networks.
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