Search results for: Learning strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2915

Search results for: Learning strategies

365 Investigations of Protein Aggregation Using Sequence and Structure Based Features

Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan

Abstract:

The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.

Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
364 Assessing the Value of Virtual Worlds for Post- Secondary Instructors: A Survey of Innovators, Early Adopters and the Early Majority in Second Life

Authors: K. Westmoreland Bowers, Matthew W. Ragas, Jeffrey C. Neely

Abstract:

The purpose of this study was to assess the value of Second Life among post-secondary instructors with experience using Second Life as an educational tool. Using Everett Rogers-s diffusion of innovations theory, survey respondents (N = 162), were divided into three adopter categories: innovators, early adopters and the early majority. Respondents were from 15 countries and 25 academic disciplines, indicating the considerable potential this innovation has to be adopted across many different borders and in many areas of academe. Nearly 94% of respondents said they plan to use Second Life again as an educational tool. However, no significant differences were found in instructors- levels of satisfaction with Second Life as an educational tool or their perceived effect on student learning across adopter categories. On the other hand, instructors who conducted class fully in Second Life were significantly more satisfied than those who used Second Life as only a small supplement to a real-world class. Overall, personal interest factors, rather than interpersonal communication factors, most influenced respondents- decision to adopt Second Life as an educational tool. In light of these findings, theoretical implications are discussed and practical suggestions are provided.

Keywords: Second Life, Virtual Worlds, Educational Technology, Diffusion of Innovations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
363 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
362 Design for Classroom Units: A Collaborative Multicultural Studio Development with Chinese Students

Authors: C. S. Caires, A. Barbosa, W. Hanyou

Abstract:

In this paper, we present the main results achieved during a five-week international workshop on Interactive Furniture for the Classroom, with 22 Chinese design students, in Jiangmen city (Guangdong province, China), and five teachers from Portugal, France, Iran, Macao SAR, and China. The main goal was to engage design students from China with new skills and practice methodologies towards interactive design research for furniture and product design for the classroom. The final results demonstrate students' concerns on improving Chinese furniture design for the classrooms, including solutions related to collaborative learning and human-interaction design for interactive furniture products. The findings of the research led students to the fabrication of five original prototypes: two for kindergartens ('Candy' and 'Tilt-tilt'), two for primary schools ('Closer' and 'Eks(x)'), and one for art/creative schools ('Wave'). From the findings, it was also clear that collaboration, personalization, and project-based teaching are still neglected when designing furniture products for the classroom in China. Students focused on these issues and came up with creative solutions that could transform this educational field in China.

Keywords: Product design, interface design, interactive design, collaborative education and design research, design prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
361 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: Neural networks, motion detection, signature detection, convolutional neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
360 Spatial Indeterminacy: Destabilization of Dichotomies in Modern and Contemporary Architecture

Authors: Adrian Lo

Abstract:

Since the advent of modern architecture, notions of free plan and transparency have proliferated well into current trends. The movement’s notion of a spatially homogeneous, open and limitless ‘free plan’ contrasts with the spatially heterogeneous ‘series of rooms’ defined by load bearing walls, which in turn triggered new notions of transparency created by vast expanses of glazed walls. Similarly, transparency was also dichotomized as something that was physical or optical, as well as something conceptual, akin to spatial organization. As opposed to merely accepting the duality and possible incompatibility of these dichotomies, this paper seeks to ask how can space be both literally and phenomenally transparent, as well as exhibit both homogeneous and heterogeneous qualities? This paper explores this potential destabilization or blurring of spatial phenomena by dissecting the transparent layers and volumes of a series of selected case studies to investigate how different architects have devised strategies of spatial ambiguity and interpenetration. Projects by Peter Eisenman, Sou Fujimoto, and SANAA will be discussed and analyzed to show how the superimposition of geometries and spaces achieve different conditions of layering, transparency, and interstitiality. Their particular buildings will be explored to reveal various innovative kinds of spatial interpenetration produced through the articulate relations of the elements of architecture, which challenge conventional perceptions of interior and exterior whereby visual homogeneity blurs with spatial heterogeneity. The results show how spatial conceptions such as interpenetration and transparency have the ability to subvert not only inside-outside dialectics, but could also produce multiple degrees of interiority within complex and indeterminate spatial dimensions in constant flux as well as present alternative forms of social interaction.

Keywords: interpenetration, literal and phenomenal transparency, spatial heterogeneity, visual homogeneity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
359 Energy Supply, Demand and Environmental Analysis – A Case Study of Indian Energy Scenario

Authors: I.V. Saradhi, G.G. Pandit, V.D. Puranik

Abstract:

Increasing concerns over climate change have limited the liberal usage of available energy technology options. India faces a formidable challenge to meet its energy needs and provide adequate energy of desired quality in various forms to users in sustainable manner at reasonable costs. In this paper, work carried out with an objective to study the role of various energy technology options under different scenarios namely base line scenario, high nuclear scenario, high renewable scenario, low growth and high growth rate scenario. The study has been carried out using Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model which evaluates the alternative energy supply strategies with user defined constraints on fuel availability, environmental regulations etc. The projected electricity demand, at the end of study period i.e. 2035 is 500490 MWYr. The model predicted the share of the demand by Thermal: 428170 MWYr, Hydro: 40320 MWYr, Nuclear: 14000 MWYr, Wind: 18000 MWYr in the base line scenario. Coal remains the dominant fuel for production of electricity during the study period. However, the import dependency of coal increased during the study period. In baseline scenario the cumulative carbon dioxide emissions upto 2035 are about 11,000 million tones of CO2. In the scenario of high nuclear capacity the carbon dioxide emissions reduced by 10 % when nuclear energy share increased to 9 % compared to 3 % in baseline scenario. Similarly aggressive use of renewables reduces 4 % of carbon dioxide emissions.

Keywords: Carbon dioxide, energy, electricity, message.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
358 Real-time Target Tracking Using a Pan and Tilt Platform

Authors: Moulay A. Akhloufi

Abstract:

In recent years, we see an increase of interest for efficient tracking systems in surveillance applications. Many of the proposed techniques are designed for static cameras environments. When the camera is moving, tracking moving objects become more difficult and many techniques fail to detect and track the desired targets. The problem becomes more complex when we want to track a specific object in real-time using a moving Pan and Tilt camera system to keep the target within the image. This type of tracking is of high importance in surveillance applications. When a target is detected at a certain zone, the possibility of automatically tracking it continuously and keeping it within the image until action is taken is very important for security personnel working in very sensitive sites. This work presents a real-time tracking system permitting the detection and continuous tracking of targets using a Pan and Tilt camera platform. A novel and efficient approach for dealing with occlusions is presented. Also a new intelligent forget factor is introduced in order to take into account target shape variations and avoid learning non desired objects. Tests conducted in outdoor operational scenarios show the efficiency and robustness of the proposed approach.

Keywords: Tracking, surveillance, target detection, Pan and tilt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
357 Counterpropagation Neural Network for Solving Power Flow Problem

Authors: Jayendra Krishna, Laxmi Srivastava

Abstract:

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.

Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
356 Efficacy of Methyl Eugenol and Food-Based Lures in Trapping Oriental Fruit Fly Bactrocera dorsalis (Diptera: Tephritidae) on Mango Homestead Trees

Authors: Juliana Amaka Ugwu

Abstract:

Trapping efficiency of methyl eugenol and three locally made food-based lures were evaluated in three locations for trapping of B. dorsalis on mango homestead trees in Ibadan South west Nigeria. The treatments were methyl eugenol, brewery waste, pineapple juice, orange juice, and control (water). The experiment was laid in a Complete Randomized Block Design (CRBD) and replicated three times in each location. Data collected were subjected to analysis of variance and significant means were separated by Turkey’s test. The results showed that B. dorsalis was recorded in all locations of study. Methyl eugenol significantly (P < 0.05) trapped higher population of B. dorsalis in all the study area. The population density of B. dorsalis was highest during the ripening period of mango in all locations. The percentage trapped flies after 7 weeks were 77.85%-82.38% (methyl eugenol), 7.29%-8.64% (pineapple juice), 5.62-7.62% (brewery waste), 4.41%-5.95% (orange juice), and 0.24-0.47% (control). There were no significance differences (p > 0.05) on the population of B. dorsalis trapped in all locations. Similarly, there were no significant differences (p > 0.05) on the population of flies trapped among the food attractants. However, the three food attractants significantly (p < 0.05) trapped higher flies than control. Methyl eugenol trapped only male flies while brewery waste and other food based attractants trapped both male and female flies. The food baits tested were promising attractants for trapping B. dorsalis on mango homestead tress, hence increased dosage could be considered for monitoring and mass trapping as management strategies against fruit fly infestation.

Keywords: Attractants, trapping, mango, Bactrocera dorsalis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
355 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.

Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
354 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks

Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang

Abstract:

The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.

Keywords: Femtocell networks, game theory, interference mitigation, spectrum allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
353 Investigating the Influence of L2 Motivational Self-System on Willingness to Communicate in English: A Study of Chinese Non-English Major Students in EFL Classrooms

Authors: Wanghongshu Zhou

Abstract:

This study aims to explore the relationship between the second language motivational self-system (L2MSS) and the willingness to communicate (WTC) among Chinese non-English major students in order to provide pedagogical implications for English as a Foreign Language (EFL) classrooms in Chinese universities. By employing a mixed methods approach, we involved 103 Chinese non-English major students from a typical university in China, conducted questionnaire survey to measure their levels of L2WTC and L2MSS level, and then analyzed the correlation between the two above mentioned variables. Semi-structured interviews were conducted with eight participants to provide a deeper understanding and explanation of the questionnaire data. Findings show that 1) Chinese non-English major students’ ideal L2 self and L2 learning experience could positively predict their L2 WTC in EFL class; 2) Chinese non-English major students’ ought-to L2 self might have no significant impact on their L2 WTC in EFL class; and 3) self-confidence might be another main factor that will influence Chinese non-English major students’ L2 WTC in EFL class. These findings might shed light on the second language acquisition field and provide pedagogical recommendations for pre-service as well as in-service EFL teachers.

Keywords: Chinese non-English major students, L2 Motivation, L2 willingness to communicate, self-confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
352 Mistranslation in Cross Cultural Communication: A Discourse Analysis on Former President Bush’s Speech in 2001

Authors: Lowai Abed

Abstract:

The differences in languages play a big role in cross-cultural communication. If meanings are not translated accurately, the risk can be crucial not only on an interpersonal level, but also on the international and political levels. The use of metaphorical language by politicians can cause great confusion, often leading to statements being misconstrued. In these situations, it is the translators who struggle to put forward the intended meaning with clarity and this makes translation an important field to study and analyze when it comes to cross-cultural communication. Owing to the growing importance of language and the power of translation in politics, this research analyzes part of President Bush’s speech in 2001 in which he used the word “Crusade” which caused his statement to be misconstrued. The research uses a discourse analysis of cross-cultural communication literature which provides answers supported by historical, linguistic, and communicative perspectives. The first finding indicates that the word ‘crusade’ carries different meaning and significance in the narratives of the Western world when compared to the Middle East. The second one is that, linguistically, maintaining cultural meanings through translation is quite difficult and challenging. Third, when it comes to the cross-cultural communication perspective, the common and frequent usage of literal translation is a sign of poor strategies being followed in translation training. Based on the example of Bush’s speech, this paper hopes to highlight the weak practices in translation in cross-cultural communication which are still commonly used across the world. Translation studies have to take issues such as this seriously and attempt to find a solution. In every language, there are words and phrases that have cultural, historical and social meanings that are woven into the language. Literal translation is not the solution for this problem because that strategy is unable to convey these meanings in the target language.

Keywords: Crusade, metaphor, mistranslation, war in terror.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
351 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study

Authors: Mitchell J. McHugh, John J. Case

Abstract:

Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.

Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
350 Identifying Understanding Expectations of School Administrators Regarding School Assessment

Authors: Eftah Bte. Moh Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor

Abstract:

This study aims to identify the understanding expectations of school administrators concerning school assessment. The researcher utilized a qualitative descriptive study on 19 administrators from three secondary schools in the North Kinta district. The respondents had been interviewed on their understanding expectations of school assessment using the focus group discussion method. Overall findings showed that the administrators’ understanding expectations of school assessment was weak; especially in terms of content focus, articulation across age and grade, transparency and fairness, as well as the pedagogical implications. Findings from interviews indicated that administrators explained their understanding expectations of school assessment from the aspect of school management, and not from the aspect of instructional leadership or specifically as assessment leaders. The study implications from the administrators’ understanding expectations may hint at the difficulty of the administrators to function as assessment leaders, in order to reduce their focus as manager, and move towards their primary role in the process of teaching and learning. The administrator, as assessment leaders, would be able to reach assessment goals via collaboration in identifying and listing teacher assessment competencies, how to construct assessment capacity, how to interpret assessment correctly, the use of assessment and how to use assessment information to communicate confidently and effectively to the public.

Keywords: Assessment leaders, assessment goals, instructional leadership, understanding expectation of assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
349 Extraction of Symbolic Rules from Artificial Neural Networks

Authors: S. M. Kamruzzaman, Md. Monirul Islam

Abstract:

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
348 Estimating Spatial Disaggregation of Urban Thermal Responsiveness on Summer Diurnal Range with a Numerical Modeling Approach in Bangkok, Thailand

Authors: Manat Srivanit, Hokao Kazunori

Abstract:

Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The urban climate, representing different urban morphologies across central Bangkok metropolitan area (BMA), are used to investigates the effects of both the composition and configuration of variables of urban morphology indicators on the summer diurnal range of urban climate, using correlation analyses and multiple linear regressions. Results show first indicate that approximately 92.6% of the variation in the average maximum daytime near-surface air temperature (Ta) was explained jointly by the two composition variables of urban morphology indicators including open space ratio (OSR) and floor area ratio (FAR). It has been possible to determine the membership of sample areas to the local climate zones (LCZs) using these urban morphology descriptors automatically computed with GIS and remote sensed data. Finally result found the temperature differences among zones of large separation, such as the city center could be respectively from 35.48±1.04ºC (Mean±S.D.) warmer than the outskirt of Bangkok on average for maximum daytime near surface temperature to 28.27±0.21ºC for extreme event and, can exceed as 8ºC. A spatially disaggregation of urban thermal responsiveness map would be helpful for several reasons. First, it would localize urban areas concerned by different climate behavior over summer daytime and be a good indicator of urban climate variability. Second, when overlaid with a land cover map, this map may contribute to identify possible urban management strategies to reduce heat wave effects in BMA.

Keywords: Urban climate, Urban morphology, Local climate zone, Urban planning, GIS and remote sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
347 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5682
346 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Authors: Thiang, Handry Khoswanto, Rendy Pangaldus

Abstract:

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
345 Emotion Classification by Incremental Association Language Features

Authors: Jheng-Long Wu, Pei-Chann Chang, Shih-Ling Chang, Liang-Chih Yu, Jui-Feng Yeh, Chin-Sheng Yang

Abstract:

The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.

Keywords: Association language features, Emotion Classification, Overlap-Category Feature, Nature Language Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
344 Forecasting Foreign Direct Investment with Modified Diffusion Model

Authors: Bi-Huei Tsai

Abstract:

Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.

Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
343 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48
342 Accuracy of Peak Demand Estimates for Office Buildings Using eQUEST

Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett

Abstract:

The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, US. NJ DMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.

Keywords: Building Energy Modeling, eQUEST, peak demand, smart meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176
341 Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing

Authors: V. Barot, S. McLeod, R. Harrison, A. A. West

Abstract:

Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.

Keywords: Broadcaster, circular buffer, Component-based, distributed manufacturing, remote data propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
340 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot

Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux

Abstract:

One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.

Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
339 Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Keywords: Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, Hybrid GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
338 Developing a Customizable Serious Game and Its Applicability in the Classroom

Authors: Anita Kéri

Abstract:

Recent developments in the field of education have led to a renewed interest in teaching methodologies and practices. Gamification is fast becoming a key instrument in the education of new generations and besides other methods, serious games have become the center of attention. Ready-built serious games are available for most higher education institutions to buy and implement. However, monetary restraints and the unalterable nature of the games might deter most higher education institutions from the application of these serious games. Therefore, there is a continuously growing need for a customizable serious game that has been developed based on a concrete need analysis and experts’ opinion. There has been little evidence so far of serious games that have been created based on relevant and current need analysis from higher education institution teachers, professional practitioners and students themselves. Therefore, the aim of this current paper is to analyze the needs of higher education institution educators with special emphasis on their needs, the applicability of serious games in their classrooms, and exploring options for the development of a customizable serious game framework. The paper undertakes to analyze workshop discussions on implementing serious games in education and propose a customizable serious game framework applicable in the education of the new generation. Research results show that the most important feature of a serious game is its customizability. The fact that practitioners are able to manage different scenarios and upload their own content to a game seems to be a key to the increasingly widespread application of serious games in the classroom.

Keywords: Education, gamification, game-based learning, serious games.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
337 English as a Foreign Language Students’ Perceptions towards the British Culture: The Case of Batna 2 University, Algeria

Authors: Djelloul Nedjai

Abstract:

The issue of cultural awareness triggers many controversies, especially in a context where individuals do not share the same cultural backgrounds and characteristics. The Algerian context is no exception. It is extensively important to highlight how culture remains essential in many areas. In higher education, for instance, culture plays a pivotal role in shaping individuals’ perceptions and attitudes. Henceforth, the current paper attempts to look at the perceptions of the British culture held by students engaged in learning English as a Foreign Language (EFL) at the department of English at Banta 2 University, Algeria. It also inquiries into EFL students’ perceptions of British culture. To address the aforementioned research queries, a descriptive study has been carried out wherein a questionnaire of 15 items has been deployed to collect students’ attitudes and perceptions toward British culture. Results showcase that, indeed, EFL students of the department of English at Banta 2 University hold both positive and negative perceptions towards British culture at different levels. The explanation could relate to the student's lack of acquaintance with and awareness of British culture. Consequently, this paper is an attempt to address the issue of cultural awareness from the perspective of EFL students.

Keywords: British culture, cultural awareness, EFL students’ perceptions, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211
336 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes

Authors: Omolola A. Tajelawi, Hari L. Garbharran

Abstract:

Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.

Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4404