Search results for: Network reconfiguration
260 Packet Reserving and Clogging Control via Routing Aware Packet Reserving Framework in MANET
Authors: C. Sathiyakumar, K. Duraiswamy
Abstract:
In MANET, mobile nodes communicate with each other using the wireless channel where transmission takes place with significant interference. The wireless medium used in MANET is a shared resource used by all the nodes available in MANET. Packet reserving is one important resource management scheme which controls the allocation of bandwidth among multiple flows through node cooperation in MANET. This paper proposes packet reserving and clogging control via Routing Aware Packet Reserving (RAPR) framework in MANET. It mainly focuses the end-to-end routing condition with maximal throughput. RAPR is complimentary system where the packet reserving utilizes local routing information available in each node. Path setup in RAPR estimates the security level of the system, and symbolizes the end-to-end routing by controlling the clogging. RAPR reaches the packet to the destination with high probability ratio and minimal delay count. The standard performance measures such as network security level, communication overhead, end-to-end throughput, resource utilization efficiency and delay measure are considered in this work. The results reveals that the proposed packet reservation and clogging control via Routing Aware Packet Reserving (RAPR) framework performs well for the above said performance measures compare to the existing methods.
Keywords: Packet reserving, Clogging control, Packet reservation in MANET, RAPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808259 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n
Authors: Susmita Das, Kala Praveen Bagadi
Abstract:
SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925258 Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment
Authors: Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar, Zainul AhmadRajion
Abstract:
Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.
Keywords: Visualization, Grid computing, Medical datasets, visualization techniques, thin clients, Globus toolkit, VTK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751257 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205256 Comparison between Turbo Code and Convolutional Product Code (CPC) for Mobile WiMAX
Authors: Ahmed Ebian, Mona Shokair, Kamal Awadalla
Abstract:
Mobile WiMAX is a broadband wireless solution that enables convergence of mobile and fixed broadband networks through a common wide area broadband radio access technology and flexible network architecture. It adopts Orthogonal Frequency Division Multiple Access (OFDMA) for improved multi-path performance in Non-Line-Of-Sight (NLOS) environments. Scalable OFDMA (SOFDMA) is introduced in the IEEE 802e[1]. WIMAX system uses one of different types of channel coding but The mandatory channel coding scheme is based on binary nonrecursive Convolutional Coding (CC). There are other several optional channel coding schemes such as block turbo codes, convolutional turbo codes, and low density parity check (LDPC). In this paper a comparison between the performance of WIMAX using turbo code and using convolutional product code (CPC) [2] is made. Also a combination between them had been done. The CPC gives good results at different SNR values compared to both the turbo system, and the combination between them. For example, at BER equal to 10-2 for 128 subcarriers, the amount of improvement in SNR equals approximately 3 dB higher than turbo code and equals approximately 2dB higher than the combination respectively. Several results are obtained at different modulating schemes (16QAM and 64QAM) and different numbers of sub-carriers (128 and 512).Keywords: Turbo Code, Convolutional Product Code (CPC), Convolutional Product Code (CPC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3397255 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477254 SPA-VNDN: Enhanced Smart Parking Application by Vehicular Named Data Networking
Authors: Bassma Aldahlan, Zongming Fei
Abstract:
Recently, there is a great interest in smart parking application. Theses applications are enhanced by a vehicular ad-hoc network, which helps drivers find and reserve satiable packing spaces for a period of time ahead of time. Named Data Networking (NDN) is a future Internet architecture that benefits vehicular ad-hoc networks because of its clean-slate design and pure communication model. In this paper, we proposed an NDN-based frame-work for smart parking that involved a fog computing architecture. The proposed application had two main directions: First, we allowed drivers to query the number of parking spaces in a particular parking lot. Second, we introduced a technique that enabled drivers to make intelligent reservations before their arrival time. We also introduced a “push-based” model supporting the NDN-based framework for smart parking applications. To evaluate the proposed solution’s performance, we analyzed the function for finding parking lots with available parking spaces and the function for reserving a parking space. Our system showed high performance results in terms of response time and push overhead. The proposed reservation application performed better than the baseline approach.
Keywords: Cloud Computing, Vehicular Named Data Networking, Smart Parking Applications, Fog Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227253 Context Aware Anomaly Behavior Analysis for Smart Home Systems
Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu
Abstract:
The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.
Keywords: Internet of Things, network security, context awareness, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278252 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.
Keywords: Bilingual, children who stutter, children with language impairment, Hidden Markov Models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029251 Geovisualization of Tourist Activity Travel Patterns Using 3D GIS: An Empirical Study of Tamsui, Taiwan
Authors: Meng-Lung Lin, Chien-Min Chu, Chung-Hung Tsai, Chih-Cheng Chen, Chen-Yuan Chen
Abstract:
The study of tourist activities and the mapping of their routes in space and time has become an important issue in tourism management. Here we represent space-time paths for the tourism industry by visualizing individual tourist activities and the paths followed using a 3D Geographic Information System (GIS). Considerable attention has been devoted to the measurement of accessibility to shopping, eating, walking and other services at the tourist destination. I turns out that GIS is a useful tool for studying the spatial behaviors of tourists in the area. The value of GIS is especially advantageous for space-time potential path area measures, especially for the accurate visualization of possible paths through existing city road networks. This study seeks to apply space-time concepts with a detailed street network map obtained from Google Maps to measure tourist paths both spatially and temporally. These paths are further determined based on data obtained from map questionnaires regarding the trip activities of 40 individuals. The analysis of the data makes it possible to determining the locations of the more popular paths. The results can be visualized using 3D GIS to show the areas and potential activity opportunities accessible to tourists during their travel time.
Keywords: Tourist activity analysis, space-time path, GIS, geovisualization, activity-travel pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494250 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5548249 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684248 Distributed Generator Placement for Loss Reduction and Improvement in Reliability
Authors: Priyanka Paliwal, N.P. Patidar
Abstract:
Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102247 Development of Software Complex for Digitalization of Enterprise Activities
Authors: G. T. Balakayeva, K. K. Nurlybayeva, M. B. Zhanuzakov
Abstract:
In the proposed work, we have developed software and designed a software architecture for the implementation of enterprise business processes. The proposed software has a multi-level architecture using a domain-specific tool. The developed architecture is a guarantor of the availability, reliability and security of the system and the implementation of business processes, which are the basis for effective enterprise management. Automating business processes, automating the algorithmic stages of an enterprise, developing optimal algorithms for managing activities, controlling and monitoring, reducing risks and improving results help organizations achieve strategic goals quickly and efficiently. The software described in this article can connect to the corporate information system via two methods: a desktop client and a web client. With an appeal to the application server, the desktop client program connects to the information system on the company's work PCs over a local network. Outside the organization, the user can interact with the information system via a web browser, which acts as a web client and connects to a web server. The developed software consists of several integrated modules that share resources and interact with each other through an API. The following technology stack was used during development: Node js, React js, MongoDB, Ngnix, Cloud Technologies, Python.
Keywords: Algorithms, document processing, automation, integrated modules, software architecture, software design, information system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207246 Secure Low-Bandwidth Video Streaming through Reliable Multipath Propagation in MANETs
Authors: S. Mohideen Badhusha, K. Duraiswamy
Abstract:
Most of the existing video streaming protocols provide video services without considering security aspects in decentralized mobile ad-hoc networks. The security policies adapted to the currently existing non-streaming protocols, do not comply with the live video streaming protocols resulting in considerable vulnerability, high bandwidth consumption and unreliability which cause severe security threats, low bandwidth and error prone transmission respectively in video streaming applications. Therefore a synergized methodology is required to reduce vulnerability and bandwidth consumption, and enhance reliability in the video streaming applications in MANET. To ensure the security measures with reduced bandwidth consumption and improve reliability of the video streaming applications, a Secure Low-bandwidth Video Streaming through Reliable Multipath Propagation (SLVRMP) protocol architecture has been proposed by incorporating the two algorithms namely Secure Low-bandwidth Video Streaming Algorithm and Reliable Secure Multipath Propagation Algorithm using Layered Video Coding in non-overlapping zone routing network topology. The performances of the proposed system are compared to those of the other existing secure multipath protocols Sec-MR, SPREAD using NS 2.34 and the simulation results show that the performances of the proposed system get considerably improved.Keywords: Bandwidth consumption, layered video coding, multipath propagation, reliability, security threats, video streaming applications, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883245 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education
Authors: Yong W. Foo, Lai M. Tang
Abstract:
Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.
Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29244 Event Information Extraction System (EIEE): FSM vs HMM
Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani
Abstract:
Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317243 Utilizing Biological Models to Determine the Recruitment of the Irish Republican Army
Authors: Erika Ann Schaub, Christian J Darken
Abstract:
Sociological models (e.g., social network analysis, small-group dynamic and gang models) have historically been used to predict the behavior of terrorist groups. However, they may not be the most appropriate method for understanding the behavior of terrorist organizations because the models were not initially intended to incorporate violent behavior of its subjects. Rather, models that incorporate life and death competition between subjects, i.e., models utilized by scientists to examine the behavior of wildlife populations, may provide a more accurate analysis. This paper suggests the use of biological models to attain a more robust method for understanding the behavior of terrorist organizations as compared to traditional methods. This study also describes how a biological population model incorporating predator-prey behavior factors can predict terrorist organizational recruitment behavior for the purpose of understanding the factors that govern the growth and decline of terrorist organizations. The Lotka-Volterra, a biological model that is based on a predator-prey relationship, is applied to a highly suggestive case study, that of the Irish Republican Army. This case study illuminates how a biological model can be utilized to understand the actions of a terrorist organization.
Keywords: Biological Models, Lotka-Volterra Predator-Prey Model, Terrorist Organizational Behavior, Terrorist Recruitment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524242 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.
Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856241 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762240 Evolutionary Multi-objective Optimization for Positioning of Residential Houses
Authors: Ayman El Ansary, Mohamed Shalaby
Abstract:
The current study describes a multi-objective optimization technique for positioning of houses in a residential neighborhood. The main task is the placement of residential houses in a favorable configuration satisfying a number of objectives. Solving the house layout problem is a challenging task. It requires an iterative approach to satisfy design requirements (e.g. energy efficiency, skyview, daylight, roads network, visual privacy, and clear access to favorite views). These design requirements vary from one project to another based on location and client preferences. In the Gulf region, the most important socio-cultural factor is the visual privacy in indoor space. Hence, most of the residential houses in this region are surrounded by high fences to provide privacy, which has a direct impact on other requirements (e.g. daylight and direction to favorite views). This investigation introduces a novel technique to optimally locate and orient residential buildings to satisfy a set of design requirements. The developed technique explores the search space for possible solutions. This study considers two dimensional house planning problems. However, it can be extended to solve three dimensional cases.
Keywords: Evolutionary optimization, Houses planning, Urban modeling, Daylight, Visual Privacy, Residential compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545239 Microseismicity of the Tehran Region Based on Three Seismic Networks
Authors: Jamileh Vasheghani Farahani
Abstract:
The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).
Keywords: Iran, major faults, microseismicity, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518238 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec
Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne
Abstract:
Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.Keywords: Artificial intelligence, linear transformation and pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834237 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization
Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke
Abstract:
The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.
Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026236 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures
Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani
Abstract:
Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842235 Finding Pareto Optimal Front for the Multi- Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, Pareto Optimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808234 Integrated Waste-to-Energy Approach: An Overview
Authors: Tsietsi J. Pilusa, Tumisang G. Seodigeng
Abstract:
This study evaluates the benefits of advanced waste management practices in unlocking waste-to-energy opportunities within the solid waste industry. The key drivers of sustainable waste management practices, specifically with respect to packaging waste-to-energy technology options are discussed. The success of a waste-to-energy system depends significantly on the appropriateness of available technologies, including those that are well established as well as those that are less so. There are hard and soft interventions to be considered when packaging an integrated waste treatment solution. Technology compatibility with variation in feedstock (waste) quality and quantities remains a key factor. These factors influence the technology reliability in terms of production efficiencies and product consistency, which in turn, drives the supply and demand network. Waste treatment technologies rely on the waste material as feedstock; the feedstock varies in quality and quantities depending on several factors; hence, the technology fails, as a result. It is critical to design an advanced waste treatment technology in an integrated approach to minimize the possibility of technology failure due to unpredictable feedstock quality, quantities, conversion efficiencies, and inconsistent product yield or quality. An integrated waste-to-energy approach offers a secure system design that considers sustainable waste management practices.
Keywords: Emerging markets, evaluation tool, interventions, waste treatment technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009233 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester
Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar
Abstract:
Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.
Keywords: Defects, forming, impact, induced properties, textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524232 Design of Direct Power Controller for a High Power Neutral Point Clamped Converter Using Real Time Simulator
Authors: Amin Zabihinejad, Philippe Viarouge
Abstract:
In this paper, a direct power control (DPC) strategies have been investigated in order to control a high power AC/DC converter with time variable load. This converter is composed of a three level three phase neutral point clamped (NPC) converter as rectifier and an H-bridge four quadrant current control converter. In the high power application, controller not only must adjust the desire outputs but also decrease the level of distortions which are injected to the network from the converter. Regarding to this reason and nonlinearity of the power electronic converter, the conventional controllers cannot achieve appropriate responses. In this research, the precise mathematical analysis has been employed to design the appropriate controller in order to control the time variable load. A DPC controller has been proposed and simulated using Matlab/ Simulink. In order to verify the simulation result, a real time simulator- OPAL-RT- has been employed. In this paper, the dynamic response and stability of the high power NPC with variable load has been investigated and compared with conventional types using a real time simulator. The results proved that the DPC controller is more stable and has more precise outputs in comparison with conventional controller.
Keywords: Direct Power Control, Three Level Rectifier, Real Time Simulator, High Power Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970231 Exploring Social Impact of Emerging Technologies from Futuristic Data
Authors: Heeyeul Kwon, Yongtae Park
Abstract:
Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.
Keywords: Emerging technologies, futuristic data, scenario, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392