Search results for: GARCH-in-Mean models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2524

Search results for: GARCH-in-Mean models

94 Implementing an Intuitive Reasoner with a Large Weather Database

Authors: Yung-Chien Sun, O. Grant Clark

Abstract:

In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.

Keywords: Artificial intelligence, intuition, knowledge acquisition, limited certainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
93 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to the unreliable weather patterns, Ghana increased its reliance on thermal power. Thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically 'vertically integrated', with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is the need for increasing renewable energy such as wind and solar in the electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allow any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
92 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity

Authors: J. Urbánek Jiří, Krahulec Josef, Johanidesová Jitka, F. Urbánek Jiří

Abstract:

This paper deals with using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In first part of paper, it will be introduced entities, operators, and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases, and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case, and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is necessary condition for the encompassment for both emergency events and the mitigation of organization´s damages. Uninterrupted and continuous cycling process brings for crisis management fruitfulness and it is good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.

Keywords: Blazons, computational assistance, DYVELOP method, critical infrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
91 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions

Authors: Saad Roustom, Hajo Ribberink

Abstract:

In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.

Keywords: Connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105
90 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry

Authors: David E. Culler, Noah D. Anderson

Abstract:

Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.

Keywords: CAD/CAM, CAPP, PDM, PLM, Scalable Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
89 Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone

Authors: Vijay Shankar

Abstract:

Different techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. Shallow water table contribution to supply crop water use may be important in arid and semi-arid regions. Development of predictive root uptake models, under influence of shallow water table makes it possible for planners to incorporate interaction between water table and root zone into design of irrigation projects. A model for obtaining soil moisture depletion from root zone and water movement below it is discussed with the objective to determine impact of shallow water table on seasonal moisture depletion patterns under water table depth variation, up to the bottom of root zone. The role of different boundary conditions has also been considered. Three crops: Wheat (Triticum aestivum), Corn (Zea mays) and Potato (Solanum tuberosum), common in arid & semi-arid regions, are chosen for the study. Using experimentally obtained soil moisture depletion values for potential soil moisture conditions, moisture depletion patterns using a non linear root uptake model have been obtained for different water table depths. Comparative analysis of the moisture depletion patterns under these conditions show a wide difference in percent depletion from different layers of root zone particularly top and bottom layers with middle layers showing insignificant variation in moisture depletion values. Moisture depletion in top layer, when the water table rises to root zone increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato respectively. The paper also discusses the causes and consequences of increase in moisture depletion from top layers and exceptionally high reduction in bottom layer, and the possible remedies for the same. The numerical model developed for the study can be used to help formulating irrigation strategies for areas where shallow groundwater of questionable quality is an option for crop production.

Keywords: Moisture Depletion, crop root zone, ground water table, irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
88 Application of a Theoretical Framework as a Context for a Travel Behavior Change Policy Intervention

Authors: F. Moghtaderi, M. Burke, J. Troelsen

Abstract:

There has been a significant decline in active travel and a massive increase in the use of car dependent travel in many countries during the past two decades. Evidential risks for people’s physical and mental health problems are correlated with this increased use of motorized travel. These health related problems range from overweight and obesity to increased air pollution. In response to these rising concerns health professionals, traffic planers, local authorities and others have introduced a variety of initiatives to counterbalance the dominance of cars for daily journeys. However, the nature of travel behavior change interventions, which aim to reduce car use, are very complex and challenging regarding their interactions with human behavior. To change travel behavior at least two aspects have to be taken into consideration. First, how to alter attitudes and perceptions toward the sustainable and healthy modes of travel, in competition with experiences of private car use. And second, how to make these behavior change processes irreversible and sustainable. There are no comprehensive models available to guide policy interventions to increase the level of success of travel behavior change interventions across both these dimensions. A comprehensive theoretical framework is required in the effort to optimize how to facilitate and guide the processes of data collection and analysis to achieve the best possible guidelines for policy makers. Regarding the gaps in the travel behavior change research literature, this paper attempted to identify and suggest a multidimensional framework in order to facilitate planning the implemented travel behavior change interventions. A structured mixed-method model is suggested to improve the analytic power of the results according to the complexity of human behavior. In order to recognize people’s attitudes towards a specific travel mode, the Theory of Planned Behavior (TPB) was operationalized. But in order to capture decision making processes the Transtheoretical model of Behavior Change (TTM) was also used. Consequently, the combination of these two theories (TTM and TPB) has resulted in a synthesis with appropriate concepts to identify and design an implemented travel behavior change interventions.

Keywords: Behavior change theories, Theoretical framework, Travel behavior change interventions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868
87 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms

Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano

Abstract:

In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general-purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.

Keywords: Heuristic, MIP model, Remedial course, School, Timetabling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
86 Using the Monte Carlo Simulation to Predict the Assembly Yield

Authors: C. Chahin, M. C. Hsu, Y. H. Lin, C. Y. Huang

Abstract:

Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.

Keywords: Monte Carlo simulation, placement yield, PCBcharacterization, electronics assembly

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
85 Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction

Authors: Randy Gomez, Keisuke Nakamura, Kazuhiro Nakadai

Abstract:

Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.

Keywords: Human Machine Interaction, Human Computer Interaction, Voice Recognition, Acoustic Model Compensation, Acoustic Speech Enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
84 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
83 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: Debonding, dynamic response, finite element modelling, FRP beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 521
82 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
81 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: Damian Ramajo, Santiago Corzo, Norberto Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: CFD, PHWR, Thermo-hydraulic, Two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
80 Applying Participatory Design for the Reuse of Deserted Community Spaces

Authors: Wei-Chieh Yeh, Yung-Tang Shen

Abstract:

The concept of community building started in 1994 in Taiwan. After years of development, it fostered the notion of active local resident participation in community issues as co-operators, instead of minions. Participatory design gives participants more control in the decision-making process, helps to reduce the friction caused by arguments and assists in bringing different parties to consensus. This results in an increase in the efficiency of projects run in the community. Therefore, the participation of local residents is key to the success of community building. This study applied participatory design to develop plans for the reuse of deserted spaces in the community from the first stage of brainstorming for design ideas, making creative models to be employed later, through to the final stage of construction. After conducting a series of participatory designed activities, it aimed to integrate the different opinions of residents, develop a sense of belonging and reach a consensus. Besides this, it also aimed at building the residents’ awareness of their responsibilities for the environment and related issues of sustainable development. By reviewing relevant literature and understanding the history of related studies, the study formulated a theory. It took the “2012-2014 Changhua County Community Planner Counseling Program” as a case study to investigate the implementation process of participatory design. Research data are collected by document analysis, participants’ observation and in-depth interviews. After examining the three elements of “Design Participation”, “Construction Participation”, and” Follow–up Maintenance Participation” in the case, the study emerged with a promising conclusion: Maintenance works were carried out better compared to common public works. Besides this, maintenance costs were lower. Moreover, the works that residents were involved in were more creative. Most importantly, the community characteristics could be easy be recognized.

Keywords: Participatory design, Deserted spaces, Community building, Reuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
79 Computer Models of the Vestibular Head Tilt Response, and Their Relationship to EVestG and Meniere's Disease

Authors: Daniel Heibert, Brian Lithgow, Kerry Hourigan

Abstract:

This paper attempts to explain response components of Electrovestibulography (EVestG) using a computer simulation of a three-canal model of the vestibular system. EVestG is a potentially new diagnostic method for Meniere's disease. EVestG is a variant of Electrocochleography (ECOG), which has been used as a standard method for diagnosing Meniere's disease - it can be used to measure the SP/AP ratio, where an SP/AP ratio greater than 0.4-0.5 is indicative of Meniere-s Disease. In EVestG, an applied head tilt replaces the acoustic stimulus of ECOG. The EVestG output is also an SP/AP type plot, where SP is the summing potential, and AP is the action potential amplitude. AP is thought of as being proportional to the size of a population of afferents in an excitatory neural firing state. A simulation of the fluid volume displacement in the vestibular labyrinth in response to various types of head tilts (ipsilateral, backwards and horizontal rotation) was performed, and a simple neural model based on these simulations developed. The simple neural model shows that the change in firing rate of the utricle is much larger in magnitude than the change in firing rates of all three semi-circular canals following a head tilt (except in a horizontal rotation). The data suggests that the change in utricular firing rate is a minimum 2-3 orders of magnitude larger than changes in firing rates of the canals during ipsilateral/backward tilts. Based on these results, the neural response recorded by the electrode in our EVestG recordings is expected to be dominated by the utricle in ipsilateral/backward tilts (It is important to note that the effect of the saccule and efferent signals were not taken into account in this model). If the utricle response dominates the EVestG recordings as the modeling results suggest, then EVestG has the potential to diagnose utricular hair cell damage due to a viral infection (which has been cited as one possible cause of Meniere's Disease).

Keywords: Diagnostic, endolymph hydrops, Meniere's disease, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
78 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: Green entrepreneurship, barriers, Fuzzy Delphi Method, interpretive structural modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
77 Identifying Game Variables from Students’ Surveys for Prototyping Games for Learning

Authors: N. Ismail, O. Thammajinda, U. Thongpanya

Abstract:

Games-based learning (GBL) has become increasingly important in teaching and learning. This paper explains the first two phases (analysis and design) of a GBL development project, ending up with a prototype design based on students’ and teachers’ perceptions. The two phases are part of a full cycle GBL project aiming to help secondary school students in Thailand in their study of Comprehensive Sex Education (CSE). In the course of the study, we invited 1,152 students to complete questionnaires and interviewed 12 secondary school teachers in focus groups. This paper found that GBL can serve students in their learning about CSE, enabling them to gain understanding of their sexuality, develop skills, including critical thinking skills and interact with others (peers, teachers, etc.) in a safe environment. The objectives of this paper are to outline the development of GBL variables from the research question(s) into the developers’ flow chart, to be responsive to the GBL beneficiaries’ preferences and expectations, and to help in answering the research questions. This paper details the steps applied to generate GBL variables that can feed into a game flow chart to develop a GBL prototype. In our approach, we detailed two models: (1) Game Elements Model (GEM) and (2) Game Object Model (GOM). There are three outcomes of this research – first, to achieve the objectives and benefits of GBL in learning, game design has to start with the research question(s) and the challenges to be resolved as research outcomes. Second, aligning the educational aims with engaging GBL end users (students) within the data collection phase to inform the game prototype with the game variables is essential to address the answer/solution to the research question(s). Third, for efficient GBL to bridge the gap between pedagogy and technology and in order to answer the research questions via technology (i.e. GBL) and to minimise the isolation between the pedagogists “P” and technologist “T”, several meetings and discussions need to take place within the team.

Keywords: Games-based learning, design, engagement, pedagogy, preferences, prototype, variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
76 Contextual SenSe Model: Word Sense Disambiguation Using Sense and Sense Value of Context Surrounding the Target

Authors: Vishal Raj, Noorhan Abbas

Abstract:

Ambiguity in NLP (Natural Language Processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a method to create an affinity matrix to calculate the affinity between any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an algorithm to create the sense clusters of tokens using affinity matrix under hierarchy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contextual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and challenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.

Keywords: Word Sense Disambiguation, WSD, Contextual SenSe Model, Most Frequent Sense, part of speech, POS, Natural Language Processing, NLP, OOV, out of vocabulary, ELMo, Embeddings from Language Model, BERT, Bidirectional Encoder Representations from Transformers, Word2Vec, lemma_POS, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
75 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Keywords: Construction safety, contractor selection, decision support system, relational database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
74 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: Flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
73 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe

Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis

Abstract:

The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.

Keywords: Terrain builder, WebGL, virtual globe, CesiumJS, tiled map service, TMS, height-map, regular grid, Geovisual analytics, DTM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
72 Demonstration of Land Use Changes Simulation Using Urban Climate Model

Authors: Barbara Vojvodikova, Katerina Jupova, Iva Ticha

Abstract:

Cities in their historical evolution have always adapted their internal structure to the needs of society (for example protective city walls during classicism era lost their defense function, became unnecessary, were demolished and gave space for new features such as roads, museums or parks). Today it is necessary to modify the internal structure of the city in order to minimize the impact of climate changes on the environment of the population. This article discusses the results of the Urban Climate model owned by VITO, which was carried out as part of a project from the European Union's Horizon grant agreement No 730004 Pan-European Urban Climate Services Climate-Fit city. The use of the model was aimed at changes in land use and land cover in cities related to urban heat islands (UHI). The task of the application was to evaluate possible land use change scenarios in connection with city requirements and ideas. Two pilot areas in the Czech Republic were selected. One is Ostrava and the other Hodonín. The paper provides a demonstration of the application of the model for various possible future development scenarios. It contains an assessment of the suitability or inappropriateness of scenarios of future development depending on the temperature increase. Cities that are preparing to reconstruct the public space are interested in eliminating proposals that would lead to an increase in temperature stress as early as in the assignment phase. If they have evaluation on the unsuitability of some type of design, they can limit it into the proposal phases. Therefore, especially in the application of models on Local level - in 1 m spatial resolution, it was necessary to show which type of proposals would create a significant temperature island in its implementation. Such a type of proposal is considered unsuitable. The model shows that the building itself can create a shady place and thus contribute to the reduction of the UHI. If it sensitively approaches the protection of existing greenery, this new construction may not pose a significant problem. More massive interventions leading to the reduction of existing greenery create a new heat island space.

Keywords: Heat islands, land use, urban climate model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
71 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
70 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries

Abstract:

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

Keywords: Air jet weaving, aerodynamic simulation, energy efficiency, experimental measurements, power costs, weft insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
69 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: Curing, epoxy insulation, numerical simulations, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
68 Capacities of Early Childhood Education Professionals for the Prevention of Social Exclusion of Children

Authors: Dejana Bouillet, Vlatka Domović

Abstract:

Both policymakers and researchers recognize that participating in early childhood education and care (ECEC) is useful for all children, especially for those who are exposed to the high risk of social exclusion. Social exclusion of children is understood as a multidimensional construct including economic, social, cultural, health, and other aspects of disadvantage and deprivation, which individually or combined can have an unfavorable effect on the current life and development of a child, as well as on the child’s development and on disadvantaged life chances in adult life. ECEC institutions should be able to promote educational approaches that portray developmental, cultural, language, and other diversity amongst children. However, little is known about the ways in which Croatian ECEC institutions recognize and respect the diversity of children and their families and how they respond to their educational needs. That is why this paper is dedicated to the analysis of the capacities of ECEC professionals to respond to the demands of educational needs of this very diverse group of children and their families. The results obtained in the frame of the project “Models of response to educational needs of children at risk of social exclusion in ECEC institutions,” funded by the Croatian Science Foundation, will be presented. The research methodology arises from explanations of educational processes and risks of social exclusion as a complex and heterogeneous phenomenon. The preliminary results of the qualitative data analysis of educational practices regarding capacities to identify and appropriately respond to the requirements of children at risk of social exclusion will be presented. The data have been collected by interviewing educational staff in 10 Croatian ECEC institutions (n = 10). The questions in the interviews were related to various aspects of inclusive institutional policy, culture, and practices. According to the analysis, it is possible to conclude that Croatian ECEC professionals are still faced with great challenges in the process of implementation of inclusive policies, culture, and practices. There are several baselines of this conclusion. The interviewed educational professionals are not familiar enough with the whole complexity and diversity of needs of children at risk of social exclusion, and the ECEC institutions do not have enough resources to provide all interventions that these children and their families need.

Keywords: children at risk of social exclusion, ECEC professionals, inclusive policies, culture and practices, interpretative phenomenological analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
67 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model stands out within the realm of related literature as one of the few studies to employ N-DM in the context of academic staff selection. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: Analytical Hierarchy Process, Delphi Method, Multi-criteria decision making methods, neutrosophic set theory, personnel recruitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38
66 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies

Authors: Harshit Vallecha, Prabha Bhola

Abstract:

‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.

Keywords: Climate change, decentralized generation, electricity access, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
65 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila, V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3737