
 

 

 
Abstract—Pulmonary Function Tests are important non-invasive 

diagnostic tests to assess respiratory impairments and provides 
quantifiable measures of lung function. Spirometry is the most 
frequently used measure of lung function and plays an essential role 
in the diagnosis and management of pulmonary diseases. However, 
the test requires considerable patient effort and cooperation, 
markedly related to the age of patients resulting in incomplete data 
sets. This paper presents, a nonlinear model built using Multivariate 
adaptive regression splines and Random forest regression model to 
predict the missing spirometric features. Random forest based feature 
selection is used to enhance both the generalization capability and the 
model interpretability. In the present study, flow-volume data are 
recorded for N= 198 subjects. The ranked order of feature importance 
index calculated by the random forests model shows that the 
spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the 
demographic parameter height are the important descriptors. A 
comparison of performance assessment of both models prove that, the 
prediction ability of MARS with the `top two ranked features namely 
the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and 
R2= 0.99 for normal and abnormal subjects. The Root Mean Square 
Error analysis of the RF model and the MARS model also shows that 
the latter is capable of predicting the missing values of FEV1 with a 
notably lower error value of 0.0191 (normal subjects) and 0.0106 
(abnormal subjects) with the aforementioned input features. It is 
concluded that combining feature selection with a prediction model 
provides a minimum subset of predominant features to train the 
model, as well as yielding better prediction performance. This 
analysis can assist clinicians with a intelligence support system in the 
medical diagnosis and improvement of clinical care.  
 

Keywords—FEV1, Multivariate Adaptive Regression Splines 
Pulmonary Function Test, Random Forest. 

I. INTRODUCTION 

ULMONARY disease changes the physiology of the lungs 
which manifests as changes in respiratory mechanics [1]. 

Impairment of Pulmonary function is a significant factor that 
may affect quality of life and can lead to increased risks of 
premature morbidity and mortality [2]-[4]. The assessment of 
respiratory function and mechanics is of crucial importance to 
understand the pathophysiology of the disease and to provide 
guidelines for therapeutic measures.  

Pulmonary function tests (PFT) are non invasive 
diagnostics, provide quantifiable measures of lung function 
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and are used to evaluate and monitor pulmonary function 
abnormality. Spirometry is the often used choice of PFT in 
assessment of airways impairment by measuring forced 
expiratory volumes and flow rates of respiratory system. 
These measurements enable physician to diagnose the 
presence and severity of airway obstruction, lung cancer, 
coronary artery disease and stroke [5]–[8]. It is an essential 
investigation method for diagnosis and management of lung 
diseases like asthma and Chronic Obstructive Pulmonary 
Disease (COPD) [9]. 

The significant flow volume parameters recorded with the 
spirometer are Forced Vital Capacity (FVC), Forced 
Expiratory Volume in one second (FEV1), Forced expiratory 
flow at 50% (FEF50) of forced vital capacity and Forced 
Expiratory Flow at 25% of FVC (FEF25). The FVC is the 
maximal amount of air that the patient can forcibly exhale 
after taking a maximal inhalation. FEV1 is forced expiration 
volume in 1 second during forced exhalation and is universally 
used as an important marker of asthma and a measure of 
severity in COPD [10].  

However the test requires patient effort and co-operation 
and in particular elderly patients are at risk for misdiagnosis 
due to low performance expectations which meets the ATS 
criteria [11], [12]. Such misclassification may lead to 
inappropriate treatment and increased use of acute healthcare 
services [13], [14]. For this reason, reliable prediction of 
significant spirometric parameters such as FEV1 using expert 
systems is essential to overcome this fuzziness in physicians’ 
interpretation. 

Feature subset selection technique for reducing the attribute 
space of a feature set, has shown to be very effective in 
increasing efficiency in learning tasks [15], [16]. Random 
forest (RF) [17] widely used in many research fields for its 
improved prediction and ability to provide variable importance 
measures that can be used to identify the most important 
predictor variables. Random forest is an ensemble of decision 
trees encompassing the advantages of low bias, ease of 
interpretation of variables in decision trees. The problem of 
over fitting in decision trees is overcome by averaging the 
outcomes across different decision trees [18]. RF has been 
used in numerous biological applications comprising of 
identification of cancer biomarkers [19], cardiac arrhythmia 
diagnosis [20] and predictive models to diagnose asthma 
patients based on respiratory sound signals [21]. Random 
forest is well-liked to identify the feature that contribute most 
to prediction using importance scores, but relatively a little 
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research has been done on predictive models exploring their 
effectiveness in the contribution of predictive accuracy [22].  

Statistical modelling technique, the Multivariate adaptive 
regression splines (MARS) is used to fit an interpretable 
model and study the involvement of feature importance in 
prediction accuracy. MARS a non parametric and flexible 
modelling approach [23] and can be considered as 
generalization of Classification and Regression Trees. The 
regression model is constructed by fitting spline basis function 
to distinct intervals of the independent variables [24]. The 
occurrence of disjoint sub regions and discontinuity of the 
approximating function at the boundaries of the intervals as in 
binary recursive partitioning has been eliminated in MARS 
[25]. In recent years MARS has been increasingly applied in 
bioinformatics that includes predictive modelling of binary 
outcomes [26], nonlinear modelling of time series analysis and 
disease risk research [27].  

The objective of this analysis is to build an expert system 
based model for the prediction of missing spirometric 
parameter Forced expiration in one second. This study 
comprises of two stage hybridized approach: In the first stage, 
the learning algorithm random forest is employed to estimate 
feature ranking and to obtain a subset of significant 
spirometric features. In stage two, performance assessment of 
RF and MARS based predictive models is evaluated on the 
selected spirometric feature set that generalizes well when 
tested with an independent validation data set. 

II. MATERIALS AND METHODS 

The spirometer recordings are carried out on adult 
volunteers (N = 198) for the present study. The portable 
InspireX spirometer with a gold standard transducer is used 
for the acquisition of the data. The patients were advised on 
the test procedure and instructed forced expirations by trained 
technician. PFT was performed in a sitting position according 
to American Thoracic Society (ATS) guidelines [22]. 
Spirometry data were recorded electronically from the subjects 
along with their demographic parameters which include age, 
weight, height and smoking history. 

Random forest, is an ensemble many individual decision 
trees that combines Breiman's [11] bagging idea and random 
selection of features, to construct the collection of decision 
trees using a two stage randomization procedure. Each tree is 
built on a bootstrap sample of the input spirometric training 
dataset introducing the first level of randomization. With the 
bootstrap sampling, each tree in the forest is constructed with 
a different subset of the training data resulting in a collection 
of different trees. A second layer of randomization is 
introduced at the node level. A subsample of the spirometric 
features is used at each tree node split, introducing further 
variation among trees. This two step randomization de-
correlates the trees, so that the forest ensemble will have low 
variance. For a tree grown on a bootstrap data, the remaining 
training data called the out of bag (OOB) data is used as test 
set for that tree. Further, the OOB data is also used to estimate 
the importance index of each spirometric feature. The ranking 
of features based on the importance index is then used to build 

a predictive model. The accuracy of the random forest’s 
prediction can be estimated from the OOB data as [26] 

 

  ∑         (1) 
 

where  is the prediction for the kth observation and   
denotes the average prediction for the kth observation from all 
trees for which this observation has been the out of bag data. 

MARS regression model is constructed by fitting piecewise 
linear basis function for each input feature  at distinct 
intervals. These functions are called hinge function  and 
is of the form max 0, , max 0, . The joining points 
of the piecewise polynomials are the knots or nodes (t). 
MARS uses two-sided truncated power functions as spline 
basis function described by [25], 

 

  
                          

0                                 
      (2a) 

 

         
                     

0                                                  
     (2b)

  
where q is the power to which the splines are raised and which 
determines the degree of smoothness of the resultant function 
estimate. The final MARS model of has the form  

 
  ∑           (3) 

 
where y is the predicted response,  is the explanatory 
variable, a  and a are estimated coefficients to yield the best 
fit of data, M is the number of basis functions included into 
the model and B x  is the mth basis function. 

III. RESULTS AND DISCUSSION 

In the present study, flow-volume data are recorded for N= 
198 subjects and a total of 9 parameters are derived from 
them. The statistical analysis such as mean and standard 
deviation on the spirometric pulmonary function parameters 
are presented in Table I. The mean values of significant 
parameters such as FVC, FEV1, PEF and FEF25-75% in normal 
subjects are distinctly higher than that of the abnormal cases.  

 
TABLE I 

SPIROMETRIC PULMONARY DATA DESCRIPTION OF ATTRIBUTES 

Attribute description 
Normal Subjects 

Mean ±SD 

Abnormal 
Subjects 

Mean ± SD 

Forced Vital Capacity (FVC) 2.63 ± 0.74 1.95 ± 0.70 
Forced Expiratory flow at 25% 

( FEF 25) 
4.02 ± 1.36 3.30 ± 1.59  

Forced expiratory flow at 50% (FEF 50) 2.54 ± 0.92 2.02 ± 0.94 
Forced expiratory flow at 25% - 75% 

(FEF 25-75) 
2.34 ± 0.85 1.85 ± 0.83 

Peak Expiratory flow (PEF) 5.24 ± 1.79  4.22 ± 1.94 

Height(cms) 152.71 ± 12.60 153.13 ± 13.50 

Weight(Kgs) 54.08 ± 15.88 57.27 ± 17.90 

 

To obtain the ordered list of features, the feature importance 
index calculated by the Random forests model was recorded. 
The procedure was repeated 10 times due to the stochastic 
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nature of the random forest approach and averaged for each 
feature. The averaged values of a total of 9 spirometric 
features were then sorted and ranked in descending order 
(Figs. 1 (a) & (b)). 

The results depicts that the spirometric features FVC, FEF 
25, PEF, FEF 25-75, FEF50 and the demographic parameter 
height are the important descriptors while the other features 
are moderately important. Random Forest and MARS 
predictive model were fitted with aforementioned dominant 
spirometric features where each feature was included in an 
incremental order based on their ranking and the statistical 
results of their performance were analysed. 

The coefficient of determination R2 by the model and the 
Root mean squared error (RMSE) are performed to determine 
the external predictive ability of the model. The coefficient of 
determination R2 very close to 1 exhibit a well-fitted 
regression model with prediction outcome close to the 
observed data values .The results of statistical analysis 
obtained (Tables II and III) show that both the methodologies 
presented high values of coefficient of determination              
R2 > 0.90 in the prediction of the spirometric parameter 
Forced expiration in one second. 

 

 

(a) Mean decrease in accuracy 
 

 

(b) Mean decrease in Mean square error 

Fig. 1 Bar plots depicting the featuring ranking of input spirometric 
features 

 
TABLE II 

ASSESSMENT OF FEATURE RELEVANCE USING RANDOM FOREST ALGORITHM AND MULTIVARIATE ADAPTIVE REGRESSION SPLINES OF NORMAL SUBJECTS  

S.No Features 
RF MARS 

R2 RMSE F-value R2 RMSE F-value 

1 FVC, FEF 25 0.92 0.0222 0.8894 0.96 0.0191 1.0742 

2 FVC,FEF25, PEF 0.92 0.0231 2.32136 0.96 0.0200 1.0760 

3 FVC,FEF25,PEF,FEF25-75, 0.94 0.0224 2.6485 0.96 0.0135 0.9905 

4 FVC,FEF25,PEF,FEF25-75, FEF50 0.95 0.0219 1.8156 0.98 0.0135 0.9905 

5 FVC,FEF25,FEF50,PEF, FEF25-75, Height 0.95 0.0219 2.388 0.98 0.0135 0.9905 

 
TABLE III 

ASSESSMENT OF FEATURE RELEVANCE USING RANDOM FOREST ALGORITHM AND MULTIVARIATE ADAPTIVE REGRESSION SPLINES OF ABNORMAL SUBJECTS 

S.No Features 
RF MARS 

R2 RMSE F-value R2 RMSE F-value 

1 FVC, FEF 25 0.98 0.0192 3.4923 0.99 0.0106 1.1041 

2 FVC,FEF25, PEF 0.98 0.2052 1.57034 0.99 0.0114 1.1017 

3 FVC,FEF25, PEF,FEF25-75, 0.99 0.0185 1.5860 0.99 0.0082 1.1068 

4 FVC,FEF25, PEF,FEF25-75, FEF50 0.98 0.0229 1.4599 0.99 0.0082 1.1084 

5 FVC,FEF50,PEF, FEF25-75, Height 0.99 0.0192 1.6035 0.99 0.0082 1.1084 

  
Hence the performance of both the regression models is 

robust even in the presence of highly correlated input features. 
While comparing the prediction ability of individual models, it 
is observed that the MARS model outperforms the Hence the 
performance of both the regression models is robust even in 
the presence of highly correlated input features. While 
comparing the prediction ability of individual models, it is 
observed that the MARS model outperforms Random forest 
model for both normal as well as the abnormal subjects. The 
results show a higher value of R2= 0.96 and R2= 0.99 with the 
first two ranked input features namely the FVC and FEF 25.  

The computed root mean square error value between the 

predicted and observed FEV1 values is plotted in Fig. 2 for the 
normal subjects and in Fig. 3 for the abnormal subjects. In 
both the models it is observed that lowest error rate is obtained 
with the input features FVC, FEF25, PEF and FEF25-75. The 
error analysis of the RF model and the MARS model also 
show that the latter is capable of predicting the missing values 
of FEV1 with a notably lower error value of RMSE = 0.0191 
for normal subjects and RMSE = 0.0106 for abnormal subjects 
with a minimal subset of two input features. Hence the MARS 
model generalizes well even with a high dimensional dataset 
and in the presence of highly correlated variables predicting 
near accurate values of FEV1. It is then concluded that 
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combining feature selection step with a prediction model we 
can obtain a minimum subset of important features to train a 
faster and more robust model, yielding better prediction 
performance.  

 

 

Fig. 2 Variations in Root mean square error with varying number of 
input features for normal subjects 

 

 

Fig. 3 Variations in Root mean square error with varying number of 
input features for abnormal subjects 

IV. CONCLUSION 

Spirometry is the most frequently performed clinical 
pulmonary function test to assess the dynamics of respiratory 
system in human subjects. It evaluates lung disease measuring 
airflow that moves air out of the lungs after taking the deepest 
breath possible. Spirometric tests may sometimes result in 
incomplete data set due to lack of ability to follow instructions 
of the test in particular patients with lung impairment.  

In this work, investigation to apply methodology to able to 
reduce the feature space while increasing the model prediction 
capabilities and hence reducing the redundancy and 
correlation between variables is analyzed. The performance of 
two non- linear regression strategies Random forest (RF) and 
Multivariate adaptive regression splines for the prediction of 
most significant pulmonary function parameter Forced 
Expiratory Volume in one second (FEV1) is presented. Flow 
volume spirometric parameters for N=198 inclusive of both 
normal and abnormal subjects was considered for analysis. It 
is observed that the MARS model outperforms the Random 
forest model with higher value of R2= 0.96 and R2= 0.99 for 
the top two ranked input features namely the FVC and FEF 25. 
A significant outcome of this model is its capability to predict 

the missing FEV1 values of the subjects with minimal subset 
of input features, yet achieving a comparable result with [3] 
evidencing the benefits of feature selection performed by the 
RF model. The analysis provides a better understanding of the 
underlying relationship of the feature space, improved 
prediction performance with descriptors diminished in their 
numbers. This improved hybridized feature selection and 
prediction model based decision support system can also aid in 
clinical care tests enhancing medical diagnosis for pulmonary 
impairments. 
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