Search results for: Extremal Properties
449 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity
Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki
Abstract:
The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.Keywords: Indium tin oxide, particles, surface-modification, volume resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255448 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery
Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén
Abstract:
A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.
Keywords: Computational Fluid Dynamics (CFD), Modeling, Multi-phase, Transport Phenomena, Lithium-air battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745447 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211446 SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization
Authors: Sudip Ghosh, Dipanwita Roy, Dipan Chatterjee, Paramita Bhattacharjee, Satadal Das
Abstract:
Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10g at 55°C, 512 bar after 60min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77mg gallic acid/g dry bay leaf), reducing power (0.80mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20mg/ml) and anti-inflammatory potency (IC50 of 1.89mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5mg/ml, respectively.
Keywords: Antimicrobial potency, Cinnamomum tamala, eugenol, supercritical carbon dioxide extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628445 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory
Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma
Abstract:
Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.Keywords: Petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151444 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites
Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina
Abstract:
Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.Keywords: Dispersion, multiwall carbon nanotubes, mechanical performance, sonication conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876443 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting
Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie
Abstract:
In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068442 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill
Authors: S. Khosravi, A. Afshar, F. Barazandeh
Abstract:
In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206441 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: σ-asymptotically quasi-nonexpansive nonselfmapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095440 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags
Authors: Elias Akoury
Abstract:
Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.
Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989439 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: Active thermography, finite element analysis, composite, curved structures, defects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711438 Investigation of Plant Density and Weed Competition in Different Cultivars of Wheat In Khoramabad Region
Authors: Ali Khourgami, Masoud Rafiee, Korous Rahmati, Ghobad Bour
Abstract:
In order to study the effect of plant density and competition of wheat with field bindweed (Convolvulus arvensis) on yield and agronomical properties of wheat(Triticum Sativum) in irrigated conditions, a factorial experiment as the base of complete randomize block design in three replication was conducted at the field of Kamalvand in khoramabad (Lorestan) region of Iran during 2008-2009. Three plant density (Factor A=200, 230 and 260kg/ha) three cultivar (Factor B=Bahar,Pishtaz and Alvand) and weed control (Factor C= control and no control of weeds)were assigned in experiment. Results show that: Plant density had significant effect (statistically) on seed yield, 1000 seed weight, weed density and dry weight of weeds, seed yield and harvest index had been meaningful effect for cultivars. The interaction between plant density and cultivars for weed density, seed yield, thousand seed weight and harvest index were significant. 260 kg/ha (plant density) of wheat had more effect on increasing of seed yield in Bahar cultivar wheat in khoramabad region of Iran.Keywords: Convolvulus arvensis, plant density, Triticumsativum, weed density, Wheat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090437 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730436 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329435 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment
Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara
Abstract:
One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙−) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.
Keywords: Heterogeneous catalysis, photodegradation, reactive oxygen species, TiO2 nanowires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895434 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method
Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz
Abstract:
In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.
Keywords: Rheology, biomass, pyrolysis, biochar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844433 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling
Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger
Abstract:
Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.
Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482432 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: Driver support systems, intelligent transportation systems, fuzzy logic, real time data processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201431 Flowability and Strength Development Characteristics of Bottom Ash Based Geopolymer
Authors: Si-Hwan Kim, Gum-Sung Ryu, Kyung-Taek Koh, Jang-Hwa Lee
Abstract:
Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.
Keywords: Bottom Ash, Geopolymer mortar, Flowability, Strength Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500430 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy
Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori
Abstract:
Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.
Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122429 Application of a Similarity Measure for Graphs to Web-based Document Structures
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser
Abstract:
Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892428 Spread Spectrum Code Estimationby Particle Swarm Algorithm
Authors: Vahid R. Asghari, Mehrdad Ardebilipour
Abstract:
In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136427 Research on Morning Commuting Behavior under Autonomous Vehicle Environment Based on Activity Method
Authors: Qing Dai, Zhengkui Lin, Jiajia Zhang, Yi Qu
Abstract:
Based on activity method, this paper focuses on morning commuting behavior when commuters travel with autonomous vehicles (AVs). Firstly, a net utility function of commuters is constructed by the activity utility of commuters at home, in car and at workplace, and the disutility of travel time cost and that of schedule delay cost. Then, this net utility function is applied to build an equilibrium model. Finally, under the assumption of constant marginal activity utility, the properties of equilibrium are analyzed. The results show that, in autonomous driving, the starting and ending time of morning peak and the number of commuters who arrive early and late at workplace are the same as those in manual driving. In automatic driving, however, the departure rate of arriving early at workplace is higher than that of manual driving, while the departure rate of arriving late is just the opposite. In addition, compared with manual driving, the departure time of arriving at workplace on time is earlier and the number of people queuing at the bottleneck is larger in automatic driving. However, the net utility of commuters and the total net utility of system in automatic driving are greater than those in manual driving.
Keywords: Autonomous cars, bottleneck model, activity utility, user equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609426 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes
Authors: Pandaba Patro, Brundaban Patro
Abstract:
The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.
Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175425 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar
Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex
Abstract:
Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.
Keywords: Mortar, sawdust waste, thermal, experimental, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595424 Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates
Authors: Chung-Yao Yang, Lin-Ya Huang, Tang-Long Shen, J. Andrew Yeh
Abstract:
The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research.Keywords: Nanosponge, Cell adhesion, Cell morphology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556423 Trade-off Between NOX, Soot and EGR Rates for an IDI Diesel Engine Fuelled with JB5
Authors: M. Gomaa, A. J. Alimin, K. A. Kamarudin
Abstract:
Nowadays, the focus on renewable energy and alternative fuels has increased due to increasing oil prices, environment pollution, and also concern on preserving the nature. Biodiesel has been known as an attractive alternative fuel although biodiesel produced from edible oil is very expensive than conventional diesel. Therefore, the uses of biodiesel produced from non-edible oils are much better option. Currently Jatropha biodiesel (JBD) is receiving attention as an alternative fuel for diesel engine. Biodiesel is non-toxic, biodegradable, high lubricant ability, highly renewable, and its use therefore produces real reduction in petroleum consumption and carbon dioxide (CO2) emissions. Although biodiesel has many advantages, but it still has several properties need to improve, such as lower calorific value, lower effective engine power, higher emission of nitrogen oxides (NOX) and greater sensitivity to low temperature. Exhaust gas recirculation (EGR) is effective technique to reduce NOX emission from diesel engines because it enables lower flame temperature and oxygen concentration in the combustion chamber. Some studies succeeded to reduce the NOX emission from biodiesel by EGR but they observed increasing soot emission. The aim of this study was to investigate the engine performance and soot emission by using blended Jatropha biodiesel with different EGR rates. A CI engine that is water-cooled, turbocharged, using indirect injection system was used for the investigation. Soot emission, NOX, CO2, carbon monoxide (CO) were recorded and various engine performance parameters were also evaluated.
Keywords: EGR, Jatropha biodiesel, NOX, Soot emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3292422 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures
Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani
Abstract:
Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842421 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs
Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam
Abstract:
The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study, the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.
Keywords: Concrete, iron ore, ice rink, energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3089420 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation
Authors: Apetsi K. Ampiah, Zhao Xin
Abstract:
Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.
Keywords: Friction damper, seismic, slip load, viscous damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714